1/* $NetBSD: midiio.h,v 1.16 2015/09/06 06:01:02 dholland Exp $ */
2
3/*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Lennart Augustsson (augustss@NetBSD.org) and (native API structures
9 * and macros) Chapman Flack (chap@NetBSD.org).
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#ifndef _SYS_MIDIIO_H_
34#define _SYS_MIDIIO_H_
35
36/*
37 * The API defined here produces events compatible with the OSS MIDI API at
38 * the binary level.
39 */
40
41#include <machine/endian_machdep.h>
42#include <sys/ioccom.h>
43
44/*
45 * ioctl() commands for /dev/midi##
46 * XXX is directly frobbing an MPU401 even supported? isn't it just run
47 * in UART mode?
48 */
49typedef struct {
50 unsigned char cmd;
51 char nr_args, nr_returns;
52 unsigned char data[30];
53} mpu_command_rec;
54
55#define MIDI_PRETIME _IOWR('m', 0, int)
56#define MIDI_MPUMODE _IOWR('m', 1, int)
57#define MIDI_MPUCMD _IOWR('m', 2, mpu_command_rec)
58
59
60/* The MPU401 command acknowledge and active sense command */
61#define MIDI_ACK 0xfe
62
63
64/* Sequencer */
65#define SEQUENCER_RESET _IO ('Q', 0)
66#define SEQUENCER_SYNC _IO ('Q', 1)
67#define SEQUENCER_INFO _IOWR('Q', 2, struct synth_info)
68#define SEQUENCER_CTRLRATE _IOWR('Q', 3, int)
69#define SEQUENCER_GETOUTCOUNT _IOR ('Q', 4, int)
70#define SEQUENCER_GETINCOUNT _IOR ('Q', 5, int)
71/*#define SEQUENCER_PERCMODE _IOW ('Q', 6, int)*/
72/*#define SEQUENCER_TESTMIDI _IOW ('Q', 8, int)*/
73#define SEQUENCER_RESETSAMPLES _IOW ('Q', 9, int)
74/*
75 * The sequencer at present makes no distinction between a 'synth' and a 'midi'.
76 * This is actually a cleaner layering than OSS: devices that are onboard
77 * synths just attach midi(4) via midisyn and present an ordinary MIDI face to
78 * the system. At present the same number is returned for NRSYNTHS and NRMIDIS
79 * but don't believe both, or you'll think you have twice as many devices as
80 * you really have. The MIDI_INFO ioctl isn't implemented; use SEQUENCER_INFO
81 * (which corresponds to OSS's SYNTH_INFO) to get information on any kind of
82 * device, though the struct synth_info it uses has some members that only
83 * pertain to synths (and get filled in with fixed, probably wrong values,
84 * anyway).
85 */
86#define SEQUENCER_NRSYNTHS _IOR ('Q',10, int)
87#define SEQUENCER_NRMIDIS _IOR ('Q',11, int)
88/*#define SEQUENCER_MIDI_INFO _IOWR('Q',12, struct midi_info)*/
89#define SEQUENCER_THRESHOLD _IOW ('Q',13, int)
90#define SEQUENCER_MEMAVL _IOWR('Q',14, int)
91/*#define SEQUENCER_FM_4OP_ENABLE _IOW ('Q',15, int)*/
92#define SEQUENCER_PANIC _IO ('Q',17)
93#define SEQUENCER_OUTOFBAND _IOW ('Q',18, struct seq_event_rec)
94#define SEQUENCER_GETTIME _IOR ('Q',19, int)
95/*#define SEQUENCER_ID _IOWR('Q',20, struct synth_info)*/
96/*#define SEQUENCER_CONTROL _IOWR('Q',21, struct synth_control)*/
97/*#define SEQUENCER_REMOVESAMPLE _IOWR('Q',22, struct remove_sample)*/
98
99#if 0
100typedef struct synth_control {
101 int devno; /* Synthesizer # */
102 char data[4000]; /* Device specific command/data record */
103} synth_control;
104
105typedef struct remove_sample {
106 int devno; /* Synthesizer # */
107 int bankno; /* MIDI bank # (0=General MIDI) */
108 int instrno; /* MIDI instrument number */
109} remove_sample;
110#endif
111
112#define CMDSIZE 8
113typedef struct seq_event_rec {
114 u_char arr[CMDSIZE];
115} seq_event_rec;
116
117struct synth_info {
118 char name[30];
119 int device;
120 int synth_type;
121#define SYNTH_TYPE_FM 0
122#define SYNTH_TYPE_SAMPLE 1
123#define SYNTH_TYPE_MIDI 2
124
125 int synth_subtype;
126#define SYNTH_SUB_FM_TYPE_ADLIB 0x00
127#define SYNTH_SUB_FM_TYPE_OPL3 0x01
128#define SYNTH_SUB_MIDI_TYPE_MPU401 0x401
129
130#define SYNTH_SUB_SAMPLE_TYPE_BASIC 0x10
131#define SYNTH_SUB_SAMPLE_TYPE_GUS SAMPLE_TYPE_BASIC
132
133 int nr_voices;
134 int instr_bank_size;
135 u_int capabilities;
136#define SYNTH_CAP_OPL3 0x00000002
137#define SYNTH_CAP_INPUT 0x00000004
138};
139
140/* Sequencer timer */
141#define SEQUENCER_TMR_TIMEBASE _IOWR('T', 1, int)
142#define SEQUENCER_TMR_START _IO ('T', 2)
143#define SEQUENCER_TMR_STOP _IO ('T', 3)
144#define SEQUENCER_TMR_CONTINUE _IO ('T', 4)
145#define SEQUENCER_TMR_TEMPO _IOWR('T', 5, int)
146#define SEQUENCER_TMR_SOURCE _IOWR('T', 6, int)
147# define SEQUENCER_TMR_INTERNAL 0x00000001
148#if 0
149# define SEQUENCER_TMR_EXTERNAL 0x00000002
150# define SEQUENCER_TMR_MODE_MIDI 0x00000010
151# define SEQUENCER_TMR_MODE_FSK 0x00000020
152# define SEQUENCER_TMR_MODE_CLS 0x00000040
153# define SEQUENCER_TMR_MODE_SMPTE 0x00000080
154#endif
155#define SEQUENCER_TMR_METRONOME _IOW ('T', 7, int)
156#define SEQUENCER_TMR_SELECT _IOW ('T', 8, int)
157
158
159#define MIDI_CTRL_BANK_SELECT_MSB 0
160#define MIDI_CTRL_MODULATION_MSB 1
161#define MIDI_CTRL_BREATH_MSB 2
162#define MIDI_CTRL_FOOT_MSB 4
163#define MIDI_CTRL_PORTAMENTO_TIME_MSB 5
164#define MIDI_CTRL_DATA_ENTRY_MSB 6
165#define MIDI_CTRL_CHANNEL_VOLUME_MSB 7
166#define MIDI_CTRL_BALANCE_MSB 8
167#define MIDI_CTRL_PAN_MSB 10
168#define MIDI_CTRL_EXPRESSION_MSB 11
169#define MIDI_CTRL_EFFECT_1_MSB 12
170#define MIDI_CTRL_EFFECT_2_MSB 13
171#define MIDI_CTRL_GENERAL_PURPOSE_1_MSB 16
172#define MIDI_CTRL_GENERAL_PURPOSE_2_MSB 17
173#define MIDI_CTRL_GENERAL_PURPOSE_3_MSB 18
174#define MIDI_CTRL_GENERAL_PURPOSE_4_MSB 19
175#define MIDI_CTRL_BANK_SELECT_LSB 32
176#define MIDI_CTRL_MODULATION_LSB 33
177#define MIDI_CTRL_BREATH_LSB 34
178#define MIDI_CTRL_FOOT_LSB 36
179#define MIDI_CTRL_PORTAMENTO_TIME_LSB 37
180#define MIDI_CTRL_DATA_ENTRY_LSB 38
181#define MIDI_CTRL_CHANNEL_VOLUME_LSB 39
182#define MIDI_CTRL_BALANCE_LSB 40
183#define MIDI_CTRL_PAN_LSB 42
184#define MIDI_CTRL_EXPRESSION_LSB 43
185#define MIDI_CTRL_EFFECT_1_LSB 44
186#define MIDI_CTRL_EFFECT_2_LSB 45
187#define MIDI_CTRL_GENERAL_PURPOSE_1_LSB 48
188#define MIDI_CTRL_GENERAL_PURPOSE_2_LSB 49
189#define MIDI_CTRL_GENERAL_PURPOSE_3_LSB 50
190#define MIDI_CTRL_GENERAL_PURPOSE_4_LSB 51
191#define MIDI_CTRL_HOLD_1 64
192#define MIDI_CTRL_PORTAMENTO 65
193#define MIDI_CTRL_SOSTENUTO 66
194#define MIDI_CTRL_SOFT_PEDAL 67
195#define MIDI_CTRL_LEGATO 68
196#define MIDI_CTRL_HOLD_2 69
197#define MIDI_CTRL_SOUND_VARIATION 70
198#define MIDI_CTRL_HARMONIC_INTENSITY 71
199#define MIDI_CTRL_RELEASE_TIME 72
200#define MIDI_CTRL_ATTACK_TIME 73
201#define MIDI_CTRL_BRIGHTNESS 74
202#define MIDI_CTRL_DECAY_TIME 75
203#define MIDI_CTRL_VIBRATO_RATE 76
204#define MIDI_CTRL_VIBRATO_DEPTH 77
205#define MIDI_CTRL_VIBRATO_DELAY 78
206#define MIDI_CTRL_VIBRATO_DECAY MIDI_CTRL_VIBRATO_DELAY /*deprecated*/
207#define MIDI_CTRL_SOUND_10 79
208#define MIDI_CTRL_GENERAL_PURPOSE_5 80
209#define MIDI_CTRL_GENERAL_PURPOSE_6 81
210#define MIDI_CTRL_GENERAL_PURPOSE_7 82
211#define MIDI_CTRL_GENERAL_PURPOSE_8 83
212#define MIDI_CTRL_PORTAMENTO_CONTROL 84
213#define MIDI_CTRL_EFFECT_DEPTH_1 91
214#define MIDI_CTRL_EFFECT_DEPTH_2 92
215#define MIDI_CTRL_EFFECT_DEPTH_3 93
216#define MIDI_CTRL_EFFECT_DEPTH_4 94
217#define MIDI_CTRL_EFFECT_DEPTH_5 95
218#define MIDI_CTRL_RPN_INCREMENT 96
219#define MIDI_CTRL_RPN_DECREMENT 97
220#define MIDI_CTRL_NRPN_LSB 98
221#define MIDI_CTRL_NRPN_MSB 99
222#define MIDI_CTRL_RPN_LSB 100
223#define MIDI_CTRL_RPN_MSB 101
224#define MIDI_CTRL_SOUND_OFF 120
225#define MIDI_CTRL_RESET 121
226#define MIDI_CTRL_LOCAL 122
227#define MIDI_CTRL_NOTES_OFF 123
228#define MIDI_CTRL_ALLOFF MIDI_CTRL_NOTES_OFF /*deprecated*/
229#define MIDI_CTRL_OMNI_OFF 124
230#define MIDI_CTRL_OMNI_ON 125
231#define MIDI_CTRL_POLY_OFF 126
232#define MIDI_CTRL_POLY_ON 127
233
234#define MIDI_BEND_NEUTRAL (1<<13)
235
236#define MIDI_RPN_PITCH_BEND_SENSITIVITY 0
237#define MIDI_RPN_CHANNEL_FINE_TUNING 1
238#define MIDI_RPN_CHANNEL_COARSE_TUNING 2
239#define MIDI_RPN_TUNING_PROGRAM_CHANGE 3
240#define MIDI_RPN_TUNING_BANK_SELECT 4
241#define MIDI_RPN_MODULATION_DEPTH_RANGE 5
242
243#define MIDI_NOTEOFF 0x80
244#define MIDI_NOTEON 0x90
245#define MIDI_KEY_PRESSURE 0xA0
246#define MIDI_CTL_CHANGE 0xB0
247#define MIDI_PGM_CHANGE 0xC0
248#define MIDI_CHN_PRESSURE 0xD0
249#define MIDI_PITCH_BEND 0xE0
250#define MIDI_SYSTEM_PREFIX 0xF0
251
252#define MIDI_IS_STATUS(d) ((d) >= 0x80)
253#define MIDI_IS_COMMON(d) ((d) >= 0xf0)
254
255#define MIDI_SYSEX_START 0xF0
256#define MIDI_SYSEX_END 0xF7
257
258#define MIDI_GET_STATUS(d) ((d) & 0xf0)
259#define MIDI_GET_CHAN(d) ((d) & 0x0f)
260
261#define MIDI_HALF_VEL 64
262
263#define SEQ_LOCAL 0x80
264#define SEQ_TIMING 0x81
265#define SEQ_CHN_COMMON 0x92
266#define SEQ_CHN_VOICE 0x93
267#define SEQ_SYSEX 0x94
268#define SEQ_FULLSIZE 0xfd
269
270#define SEQ_MK_CHN_VOICE(e, unit, cmd, chan, key, vel) (\
271 (e)->arr[0] = SEQ_CHN_VOICE, (e)->arr[1] = (unit), (e)->arr[2] = (cmd),\
272 (e)->arr[3] = (chan), (e)->arr[4] = (key), (e)->arr[5] = (vel),\
273 (e)->arr[6] = 0, (e)->arr[7] = 0)
274#define SEQ_MK_CHN_COMMON(e, unit, cmd, chan, p1, p2, w14) (\
275 (e)->arr[0] = SEQ_CHN_COMMON, (e)->arr[1] = (unit), (e)->arr[2] = (cmd),\
276 (e)->arr[3] = (chan), (e)->arr[4] = (p1), (e)->arr[5] = (p2),\
277 *(short*)&(e)->arr[6] = (w14))
278
279#if _BYTE_ORDER == _BIG_ENDIAN
280/* big endian */
281#define SEQ_PATCHKEY(id) (0xfd00|id)
282#else
283/* little endian */
284#define SEQ_PATCHKEY(id) ((id<<8)|0xfd)
285#endif
286struct sysex_info {
287 uint16_t key; /* Use SYSEX_PATCH or MAUI_PATCH here */
288#define SEQ_SYSEX_PATCH SEQ_PATCHKEY(0x05)
289#define SEQ_MAUI_PATCH SEQ_PATCHKEY(0x06)
290 int16_t device_no; /* Synthesizer number */
291 int32_t len; /* Size of the sysex data in bytes */
292 u_char data[1]; /* Sysex data starts here */
293};
294#define SEQ_SYSEX_HDRSIZE ((u_long)((struct sysex_info *)0)->data)
295
296typedef unsigned char sbi_instr_data[32];
297struct sbi_instrument {
298 uint16_t key; /* FM_PATCH or OPL3_PATCH */
299#define SBI_FM_PATCH SEQ_PATCHKEY(0x01)
300#define SBI_OPL3_PATCH SEQ_PATCHKEY(0x03)
301 int16_t device;
302 int32_t channel;
303 sbi_instr_data operators;
304};
305
306#define TMR_RESET 0 /* beware: not an OSS event */
307#define TMR_WAIT_REL 1 /* Time relative to the prev time */
308#define TMR_WAIT_ABS 2 /* Absolute time since TMR_START */
309#define TMR_STOP 3
310#define TMR_START 4
311#define TMR_CONTINUE 5
312#define TMR_TEMPO 6
313#define TMR_ECHO 8
314#define TMR_CLOCK 9 /* MIDI clock */
315#define TMR_SPP 10 /* Song position pointer */
316#define TMR_TIMESIG 11 /* Time signature */
317
318/* Old sequencer definitions */
319#define SEQOLD_CMDSIZE 4
320
321#define SEQOLD_NOTEOFF 0
322#define SEQOLD_NOTEON 1
323#define SEQOLD_WAIT TMR_WAIT_ABS
324#define SEQOLD_PGMCHANGE 3
325#define SEQOLD_SYNCTIMER TMR_START
326#define SEQOLD_MIDIPUTC 5
327#define SEQOLD_ECHO TMR_ECHO
328#define SEQOLD_AFTERTOUCH 9
329#define SEQOLD_CONTROLLER 10
330#define SEQOLD_PRIVATE 0xfe
331#define SEQOLD_EXTENDED 0xff
332
333/*
334 * The 'midipitch' data type, used in the kernel between the midisyn layer and
335 * onboard synth drivers, and in userland as parameters to the MIDI Tuning Spec
336 * (RP-012) universal-system-exclusive messages. It is a MIDI key number shifted
337 * left to accommodate 14 bit sub-semitone resolution. In this representation,
338 * tuning and bending adjustments are simple addition and subtraction.
339 */
340typedef int32_t midipitch_t;
341
342/*
343 * Nominal conversions between midipitches and key numbers. (Beware that these
344 * are the nominal, standard correspondences, but whole point of the MIDI Tuning
345 * Spec is that you can set things up so the hardware might render key N at
346 * actual pitch MIDIPITCH_FROM_KEY(N)+c for some correction c.)
347 */
348#define MIDIPITCH_FROM_KEY(k) ((k)<<14)
349#define MIDIPITCH_TO_KEY(mp) (((mp)+(1<<13))>>14)
350
351#define MIDIPITCH_MAX (MIDIPITCH_FROM_KEY(128)-2) /* ...(128)-1 is reserved */
352#define MIDIPITCH_OCTAVE 196608
353#define MIDIPITCH_SEMITONE 16384
354#define MIDIPITCH_CENT 164 /* this, regrettably, is inexact. */
355
356/*
357 * For rendering, convert a midipitch (after all tuning adjustments) to Hz.
358 * The conversion is DEFINED as MIDI key 69.00000 (A) === 440 Hz equal tempered
359 * always. Alternate tunings are obtained by adjusting midipitches.
360 *
361 * The midihz18_t (Hz shifted left for 18-bit sub-Hz resolution) covers the
362 * full midipitch range without losing 21-bit precision, as the lowest midipitch
363 * is ~8 Hz (~3 bits left of radix point, 18 right) and for the highest the
364 * result still fits in a uint32.
365 */
366typedef uint32_t midihz18_t;
367
368#define MIDIHZ18_TO_HZ(h18) ((h18)>>18) /* truncates! ok for dbg msgs maybe */
369
370#ifndef _KERNEL
371/*
372 * With floating point in userland, can also manipulate midipitches as
373 * floating-point fractional MIDI key numbers (tuning adjustments are still
374 * additive), and hz18 as fractional Hz (adjustments don't add in this form).
375 */
376#include <math.h>
377#define MIDIPITCH_TO_FRKEY(mp) (scalbn((mp),-14))
378#define MIDIPITCH_FROM_FRKEY(frk) ((midipitch_t)round(scalbn((frk),14)))
379#define MIDIHZ18_TO_FRHZ(h18) (scalbn((h18),-18))
380#define MIDIHZ18_FROM_FRHZ(frh) ((midihz18_t)round(scalbn((frh),18)))
381
382#define MIDIPITCH_TO_FRHZ(mp) (440*pow(2,(MIDIPITCH_TO_FRKEY((mp))-69)/12))
383#define MIDIPITCH_FROM_FRHZ(fhz) \
384 MIDIPITCH_FROM_FRKEY(69+12*log((fhz)/440)/log(2))
385#define MIDIPITCH_TO_HZ18(mp) MIDIHZ18_FROM_FRHZ(MIDIPITCH_TO_FRHZ((mp)))
386#define MIDIPITCH_FROM_HZ18(h18) MIDIPITCH_FROM_FRHZ(MIDIHZ18_TO_FRHZ((h18)))
387
388#else /* no fp in kernel; only an accurate to-hz18 conversion is implemented */
389
390extern midihz18_t midisyn_mp2hz18(midipitch_t);
391#define MIDIPITCH_TO_HZ18(mp) (midisyn_mp2hz18((mp)))
392
393#endif /* _KERNEL */
394
395
396/*
397 * A native API for the /dev/music sequencer device follows. The event
398 * structures are OSS events at the level of bytes, but for developing or
399 * porting applications some macros and documentation are needed to generate
400 * and dissect the events; here they are. For porting existing OSS applications,
401 * sys/soundcard.h can be extended to supply the usual OSS macros, defining them
402 * in terms of these.
403 */
404
405/*
406 * TODO: determine OSS compatible structures for TMR_RESET and TMR_CLOCK,
407 * OSS values of EV_SYSTEM, SNDCTL_SEQ_ACTSENSE_ENABLE,
408 * SNDCTL_SEQ_TIMING_ENABLE, and SNDCTL_SEQ_RT_ENABLE.
409 * (TMR_RESET may be a NetBSD extension: it is generated in sequencer.c and
410 * has no args. To be corrected if a different definition is found anywhere.)
411 */
412typedef union {
413
414#define _EVT_HDR \
415 uint8_t tag
416
417 _EVT_HDR;
418
419#define _LOCAL_HDR \
420 _EVT_HDR; \
421 uint8_t op
422
423 struct { _LOCAL_HDR; } local;
424
425 struct {
426 _LOCAL_HDR;
427 uint16_t _zero;
428 uint32_t devmask;
429 } l_startaudio;
430
431/* define a constructor for local evts - someday when we support any */
432
433#define _TIMING_HDR \
434 _LOCAL_HDR; \
435 uint16_t _zeroh
436 struct { _TIMING_HDR; } timing;
437
438 struct {
439 _TIMING_HDR;
440 uint32_t divisions;
441 } t_WAIT_REL, t_WAIT_ABS;
442
443 struct {
444 _TIMING_HDR;
445 uint32_t _zero;
446 } t_STOP, t_START, t_CONTINUE, t_RESET;
447
448 struct {
449 _TIMING_HDR;
450 uint32_t bpm; /* unambiguously, (MIDI clocks/minute)/24 */
451 } t_TEMPO;
452
453 struct {
454 _TIMING_HDR;
455 uint32_t cookie;
456 } t_ECHO;
457
458 struct {
459 _TIMING_HDR;
460 uint32_t midibeat; /* in low 14 bits; midibeat: 6 MIDI clocks */
461 } t_SPP;
462
463 struct {
464 _TIMING_HDR;
465#if _BYTE_ORDER == _BIG_ENDIAN
466 uint8_t numerator;
467 uint8_t lg2denom;
468 uint8_t clks_per_click;
469 uint8_t dsq_per_24clks;
470#elif _BYTE_ORDER == _LITTLE_ENDIAN
471 uint8_t dsq_per_24clks;
472 uint8_t clks_per_click;
473 uint8_t lg2denom;
474 uint8_t numerator;
475#else
476#error "unexpected _BYTE_ORDER"
477#endif
478 } t_TIMESIG;
479
480 struct { /* use this only to implement OSS compatibility macro */
481 _TIMING_HDR;
482 uint32_t signature;
483 } t_osscompat_timesig;
484
485
486#define _COMMON_HDR \
487 _EVT_HDR; \
488 uint8_t device; \
489 uint8_t op; \
490 uint8_t channel
491
492 struct { _COMMON_HDR; } common;
493
494 struct {
495 _COMMON_HDR;
496 uint8_t controller;
497 uint8_t _zero;
498 uint16_t value;
499 } c_CTL_CHANGE;
500
501 struct {
502 _COMMON_HDR;
503 uint8_t program;
504 uint8_t _zero0;
505 uint16_t _zero1;
506 } c_PGM_CHANGE;
507
508 struct {
509 _COMMON_HDR;
510 uint8_t pressure;
511 uint8_t _zero0;
512 uint16_t _zero1;
513 } c_CHN_PRESSURE;
514
515 struct {
516 _COMMON_HDR;
517 uint8_t _zero0;
518 uint8_t _zero1;
519 uint16_t value;
520 } c_PITCH_BEND;
521
522#define _VOICE_HDR \
523 _COMMON_HDR; \
524 uint8_t key
525
526 struct { _VOICE_HDR; } voice;
527
528 struct {
529 _VOICE_HDR;
530 uint8_t velocity;
531 uint16_t _zero;
532 } c_NOTEOFF, c_NOTEON;
533
534 struct {
535 _VOICE_HDR;
536 uint8_t pressure;
537 uint16_t _zero;
538 } c_KEY_PRESSURE;
539
540 struct {
541 _EVT_HDR;
542 uint8_t device;
543 uint8_t buffer[6];
544 } sysex;
545
546 struct {
547 _EVT_HDR;
548 uint8_t device;
549 uint8_t status;
550 uint8_t data[2];
551 } system;
552
553 struct {
554 _EVT_HDR;
555 uint8_t byte;
556 uint8_t device;
557 uint8_t _zero0;
558 uint32_t _zero1;
559 } putc; /* a seqold event that's still needed at times, ugly as 'tis */
560
561 struct {
562 _EVT_HDR;
563 uint8_t byte[7];
564 } unknown; /* for debug/display */
565
566#undef _VOICE_HDR
567#undef _COMMON_HDR
568#undef _TIMING_HDR
569#undef _LOCAL_HDR
570#undef _EVT_HDR
571
572} __packed seq_event_t;
573
574#define _SEQ_TAG_NOTEOFF SEQ_CHN_VOICE
575#define _SEQ_TAG_NOTEON SEQ_CHN_VOICE
576#define _SEQ_TAG_KEY_PRESSURE SEQ_CHN_VOICE
577
578#define _SEQ_TAG_CTL_CHANGE SEQ_CHN_COMMON
579#define _SEQ_TAG_PGM_CHANGE SEQ_CHN_COMMON
580#define _SEQ_TAG_CHN_PRESSURE SEQ_CHN_COMMON
581#define _SEQ_TAG_PITCH_BEND SEQ_CHN_COMMON
582
583#if __STDC_VERSION__ >= 199901L
584
585#define SEQ_MK_EVENT(_member,_tag,...) \
586(seq_event_t){ ._member = { .tag = (_tag), __VA_ARGS__ } }
587
588#define SEQ_MK_TIMING(_op,...) \
589SEQ_MK_EVENT(t_##_op, SEQ_TIMING, .op = TMR_##_op, __VA_ARGS__)
590
591#define SEQ_MK_CHN(_op,...) \
592SEQ_MK_EVENT(c_##_op, _SEQ_TAG_##_op, .op = MIDI_##_op, __VA_ARGS__)
593
594#define SEQ_MK_SYSEX(_dev,...) \
595SEQ_MK_EVENT(sysex, 0x94, .device=(_dev), \
596 .buffer={0xff, 0xff, 0xff, 0xff, 0xff, 0xff, __VA_ARGS__})
597
598#else /* assume gcc 2.95.3 */
599
600#define SEQ_MK_EVENT(_member,_tag,_args...) \
601(seq_event_t){ ._member = { .tag = (_tag), _args } }
602
603#define SEQ_MK_TIMING(_op,_args...) \
604SEQ_MK_EVENT(t_##_op, SEQ_TIMING, .op = TMR_##_op, _args)
605
606#define SEQ_MK_CHN(_op,_args...) \
607SEQ_MK_EVENT(c_##_op, _SEQ_TAG_##_op, .op = MIDI_##_op, _args)
608
609#define SEQ_MK_SYSEX(_dev,_args...) \
610SEQ_MK_EVENT(sysex, 0x94, .device=(_dev), \
611 .buffer={0xff, 0xff, 0xff, 0xff, 0xff, 0xff, _args})
612
613#endif /* c99 vs. gcc 2.95.3 */
614
615#if 0
616#include <fcntl.h>
617#include <stdio.h>
618int
619main(int argc, char **argv)
620{
621 int i;
622 int fd;
623 seq_event_t e;
624
625 /* simple usage example (add a buffer to reduce syscall overhead) */
626 fd = open("/dev/music", O_RDWR);
627 write(fd, &SEQ_MK_TIMING(START), sizeof (seq_event_t));
628
629 read(fd, &e, sizeof e);
630 switch ( e.tag ) {
631 case SEQ_CHN_VOICE:
632 switch ( e.voice.op ) {
633 case MIDI_NOTEON:
634 printf("Note on, dev=%d chn=%d key=%d vel=%d\n",
635 e.c_NOTEON.device, e.c_NOTEON.channel,
636 e.c_NOTEON.key, e.c_NOTEON.velocity);
637 }
638 }
639
640 /* all the macros: */
641 e = SEQ_MK_TIMING(START);
642 e = SEQ_MK_TIMING(STOP);
643 e = SEQ_MK_TIMING(CONTINUE);
644 /*
645 * Wait until the specified number of divisions from the timer start
646 * (abs) or the preceding event (rel). The number of divisions to a
647 * beat or to a MIDI clock is determined by the timebase (set by
648 * ioctl). The tempo is expressed in beats per minute, where a beat
649 * is always 24 MIDI clocks (and usually equated to a quarter note,
650 * but that can be changed with timesig)--that is, tempo is
651 * (MIDI clocks per minute)/24. The timebase is the number of divisions
652 * in a beat--that is, the number of divisions that make up 24 MIDI
653 * clocks--so the timebase is 24*(divisions per MIDI clock). The MThd
654 * header in a SMF gives the 'natural' timebase for the file; if the
655 * timebase is set accordingly, then the delay values appearing in the
656 * tracks are in terms of divisions, and can be used as WAIT_REL
657 * arguments without modification.
658 */
659 e = SEQ_MK_TIMING(WAIT_ABS, .divisions=192);
660 e = SEQ_MK_TIMING(WAIT_REL, .divisions=192);
661 /*
662 * The 'beat' in bpm is 24 MIDI clocks (usually a quarter note but
663 * changeable with timesig).
664 */
665 e = SEQ_MK_TIMING(TEMPO, .bpm=84);
666 /*
667 * An ECHO event on output appears on input at the appointed time; the
668 * cookie can be anything of interest to the application. Can be used
669 * in schemes to get some control over latency.
670 */
671 e = SEQ_MK_TIMING(ECHO, .cookie=0xfeedface);
672 /*
673 * A midibeat is smaller than a beat. It is six MIDI clocks, or a fourth
674 * of a beat, or a sixteenth note if the beat is a quarter. SPP is a
675 * request to position at the requested midibeat from the start of the
676 * sequence. [sequencer does not at present implement SPP]
677 */
678 e = SEQ_MK_TIMING(SPP, .midibeat=128);
679 /*
680 * numerator and lg2denom describe the time signature as it would
681 * appear on a staff, where lg2denom of 0,1,2,3... corresponds to
682 * denominator of 1,2,4,8... respectively. So the example below
683 * corresponds to 4/4. dsq_per_24clks defines the relationship of
684 * MIDI clocks to note values, by specifying the number of
685 * demisemiquavers (32nd notes) represented by 24 MIDI clocks.
686 * The default is 8 demisemiquavers, or a quarter note.
687 * clks_per_click can configure a metronome (for example, the MPU401
688 * had such a feature in intelligent mode) to click every so many
689 * MIDI clocks. The 24 in this example would give a click every quarter
690 * note. [sequencer does not at present implement TIMESIG]
691 */
692 e = SEQ_MK_TIMING(TIMESIG, .numerator=4, .lg2denom=2,
693 .clks_per_click=24, .dsq_per_24clks=8);
694 /*
695 * This example declares 6/8 time where the beat (24 clocks) is the
696 * eighth note, but the metronome clicks every dotted quarter (twice
697 * per measure):
698 */
699 e = SEQ_MK_TIMING(TIMESIG, .numerator=6, .lg2denom=3,
700 .clks_per_click=72, .dsq_per_24clks=4);
701 /*
702 * An alternate declaration for 6/8 where the beat (24 clocks) is now
703 * the dotted quarter and corresponds to the metronome click:
704 */
705 e = SEQ_MK_TIMING(TIMESIG, .numerator=6, .lg2denom=3,
706 .clks_per_click=24, .dsq_per_24clks=12);
707 /*
708 * It would also be possible to keep the default correspondence of
709 * 24 clocks to the quarter note (8 dsq), and still click the metronome
710 * each dotted quarter:
711 */
712 e = SEQ_MK_TIMING(TIMESIG, .numerator=6, .lg2denom=3,
713 .clks_per_click=36, .dsq_per_24clks=8);
714
715 e = SEQ_MK_CHN(NOTEON, .device=1, .channel=0, .key=60, .velocity=64);
716 e = SEQ_MK_CHN(NOTEOFF, .device=1, .channel=0, .key=60, .velocity=64);
717 e = SEQ_MK_CHN(KEY_PRESSURE, .device=1, .channel=0, .key=60,
718 .pressure=64);
719
720 /*
721 * sequencer does not at present implement CTL_CHANGE well. The API
722 * provides for a 14-bit value where you give the controller index
723 * of the controller MSB and sequencer will split the 14-bit value to
724 * the controller MSB and LSB for you--but it doesn't; it ignores the
725 * high bits of value and writes the low bits whether you have specified
726 * MSB or LSB. That would not be hard to fix but for the fact that OSS
727 * itself seems to suffer from the same mixup (and its behavior differs
728 * with whether the underlying device is an onboard synth or a MIDI
729 * link!) so there is surely a lot of code that relies on it being
730 * broken :(.
731 * (Note: as the OSS developers have ceased development of the
732 * /dev/music API as of OSS4, it would be possible given a complete
733 * list of the events defined in OSS4 to add some new ones for native
734 * use without fear of future conflict, such as a better ctl_change.)
735 */
736 e = SEQ_MK_CHN(CTL_CHANGE, .device=1, .channel=0,
737 .controller=MIDI_CTRL_EXPRESSION_MSB, .value=8192);/*XX*/
738 /*
739 * The way you really have to do it:
740 */
741 e = SEQ_MK_CHN(CTL_CHANGE, .device=1, .channel=0,
742 .controller=MIDI_CTRL_EXPRESSION_MSB, .value=8192>>7);
743 e = SEQ_MK_CHN(CTL_CHANGE, .device=1, .channel=0,
744 .controller=MIDI_CTRL_EXPRESSION_LSB, .value=8192&0x7f);
745
746 e = SEQ_MK_CHN(PGM_CHANGE, .device=1, .channel=0, .program=51);
747 e = SEQ_MK_CHN(CHN_PRESSURE, .device=1, .channel=0, .pressure=64);
748 e = SEQ_MK_CHN(PITCH_BEND, .device=1, .channel=0, .value=8192);
749
750 /*
751 * A SYSEX event carries up to six bytes of a system exclusive message.
752 * The first such message must begin with MIDI_SYSEX_START (0xf0), the
753 * last must end with MIDI_SYSEX_END (0xf7), and only the last may carry
754 * fewer than 6 bytes. To supply message bytes in the macro, you must
755 * prefix the first with [0]= as shown. The macro's first argument is
756 * the device.
757 */
758 e = SEQ_MK_SYSEX(1,[0]=MIDI_SYSEX_START,1,2,MIDI_SYSEX_END);
759 /*
760 * In some cases it may be easier to use the macro only to initialize
761 * the event, and fill in the message bytes later. The code that fills
762 * in the message does not need to store 0xff following the SYSEX_END.
763 */
764 e = SEQ_MK_SYSEX(1);
765 for ( i = 0; i < 3; ++ i )
766 e.sysex.buffer[i] = i;
767 /*
768 * It would be nice to think the old /dev/sequencer MIDIPUTC event
769 * obsolete, but it is still needed (absent any better API) by any MIDI
770 * file player that will implement the ESCAPED events that may occur in
771 * SMF. Sorry. Here's how to use it:
772 */
773 e = SEQ_MK_EVENT(putc, SEQOLD_MIDIPUTC, .device=1, .byte=42);
774
775 printf("confirm event size: %d (should be 8)\n", sizeof (seq_event_t));
776 return 0;
777}
778#endif /* 0 */
779
780#endif /* !_SYS_MIDIIO_H_ */
781