1/* $NetBSD: ip6_output.c,v 1.178 2016/11/10 04:13:53 ozaki-r Exp $ */
2/* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4/*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64#include <sys/cdefs.h>
65__KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.178 2016/11/10 04:13:53 ozaki-r Exp $");
66
67#ifdef _KERNEL_OPT
68#include "opt_inet.h"
69#include "opt_inet6.h"
70#include "opt_ipsec.h"
71#endif
72
73#include <sys/param.h>
74#include <sys/malloc.h>
75#include <sys/mbuf.h>
76#include <sys/errno.h>
77#include <sys/protosw.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/syslog.h>
81#include <sys/systm.h>
82#include <sys/proc.h>
83#include <sys/kauth.h>
84
85#include <net/if.h>
86#include <net/route.h>
87#include <net/pfil.h>
88
89#include <netinet/in.h>
90#include <netinet/in_var.h>
91#include <netinet/ip6.h>
92#include <netinet/ip_var.h>
93#include <netinet/icmp6.h>
94#include <netinet/in_offload.h>
95#include <netinet/portalgo.h>
96#include <netinet6/in6_offload.h>
97#include <netinet6/ip6_var.h>
98#include <netinet6/ip6_private.h>
99#include <netinet6/in6_pcb.h>
100#include <netinet6/nd6.h>
101#include <netinet6/ip6protosw.h>
102#include <netinet6/scope6_var.h>
103
104#ifdef IPSEC
105#include <netipsec/ipsec.h>
106#include <netipsec/ipsec6.h>
107#include <netipsec/key.h>
108#include <netipsec/xform.h>
109#endif
110
111
112#include <net/net_osdep.h>
113
114extern pfil_head_t *inet6_pfil_hook; /* XXX */
115
116struct ip6_exthdrs {
117 struct mbuf *ip6e_ip6;
118 struct mbuf *ip6e_hbh;
119 struct mbuf *ip6e_dest1;
120 struct mbuf *ip6e_rthdr;
121 struct mbuf *ip6e_dest2;
122};
123
124static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
125 kauth_cred_t, int);
126static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
127static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
128 int, int, int);
129static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
130static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
131static int ip6_copyexthdr(struct mbuf **, void *, int);
132static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
133 struct ip6_frag **);
134static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
135static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
136static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
137static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
138static int ip6_ifaddrvalid(const struct in6_addr *);
139static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
140
141#ifdef RFC2292
142static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
143#endif
144
145static int
146ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
147{
148 struct ip6_rthdr0 *rh0;
149 struct in6_addr *addr;
150 struct sockaddr_in6 sa;
151 int error = 0;
152
153 switch (rh->ip6r_type) {
154 case IPV6_RTHDR_TYPE_0:
155 rh0 = (struct ip6_rthdr0 *)rh;
156 addr = (struct in6_addr *)(rh0 + 1);
157
158 /*
159 * construct a sockaddr_in6 form of the first hop.
160 *
161 * XXX we may not have enough information about its scope zone;
162 * there is no standard API to pass the information from the
163 * application.
164 */
165 sockaddr_in6_init(&sa, addr, 0, 0, 0);
166 error = sa6_embedscope(&sa, ip6_use_defzone);
167 if (error != 0)
168 break;
169 (void)memmove(&addr[0], &addr[1],
170 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
171 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst;
172 ip6->ip6_dst = sa.sin6_addr;
173 /* XXX */
174 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
175 break;
176 default: /* is it possible? */
177 error = EINVAL;
178 }
179
180 return error;
181}
182
183/*
184 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
185 * header (with pri, len, nxt, hlim, src, dst).
186 * This function may modify ver and hlim only.
187 * The mbuf chain containing the packet will be freed.
188 * The mbuf opt, if present, will not be freed.
189 *
190 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
191 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
192 * which is rt_rmx.rmx_mtu.
193 */
194int
195ip6_output(
196 struct mbuf *m0,
197 struct ip6_pktopts *opt,
198 struct route *ro,
199 int flags,
200 struct ip6_moptions *im6o,
201 struct socket *so,
202 struct ifnet **ifpp /* XXX: just for statistics */
203)
204{
205 struct ip6_hdr *ip6, *mhip6;
206 struct ifnet *ifp = NULL, *origifp = NULL;
207 struct mbuf *m = m0;
208 int hlen, tlen, len, off;
209 bool tso;
210 struct route ip6route;
211 struct rtentry *rt = NULL, *rt_pmtu;
212 const struct sockaddr_in6 *dst;
213 struct sockaddr_in6 src_sa, dst_sa;
214 int error = 0;
215 struct in6_ifaddr *ia = NULL;
216 u_long mtu;
217 int alwaysfrag, dontfrag;
218 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
219 struct ip6_exthdrs exthdrs;
220 struct in6_addr finaldst, src0, dst0;
221 u_int32_t zone;
222 struct route *ro_pmtu = NULL;
223 int hdrsplit = 0;
224 int needipsec = 0;
225#ifdef IPSEC
226 struct secpolicy *sp = NULL;
227#endif
228 struct psref psref, psref_ia;
229 int bound = curlwp_bind();
230 bool release_psref_ia = false;
231
232#ifdef DIAGNOSTIC
233 if ((m->m_flags & M_PKTHDR) == 0)
234 panic("ip6_output: no HDR");
235
236 if ((m->m_pkthdr.csum_flags &
237 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
238 panic("ip6_output: IPv4 checksum offload flags: %d",
239 m->m_pkthdr.csum_flags);
240 }
241
242 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
243 (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
244 panic("ip6_output: conflicting checksum offload flags: %d",
245 m->m_pkthdr.csum_flags);
246 }
247#endif
248
249 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
250
251#define MAKE_EXTHDR(hp, mp) \
252 do { \
253 if (hp) { \
254 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
255 error = ip6_copyexthdr((mp), (void *)(hp), \
256 ((eh)->ip6e_len + 1) << 3); \
257 if (error) \
258 goto freehdrs; \
259 } \
260 } while (/*CONSTCOND*/ 0)
261
262 memset(&exthdrs, 0, sizeof(exthdrs));
263 if (opt) {
264 /* Hop-by-Hop options header */
265 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
266 /* Destination options header(1st part) */
267 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
268 /* Routing header */
269 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
270 /* Destination options header(2nd part) */
271 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
272 }
273
274 /*
275 * Calculate the total length of the extension header chain.
276 * Keep the length of the unfragmentable part for fragmentation.
277 */
278 optlen = 0;
279 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
280 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
281 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
282 unfragpartlen = optlen + sizeof(struct ip6_hdr);
283 /* NOTE: we don't add AH/ESP length here. do that later. */
284 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
285
286#ifdef IPSEC
287 if (ipsec_used) {
288 /* Check the security policy (SP) for the packet */
289
290 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
291 if (error != 0) {
292 /*
293 * Hack: -EINVAL is used to signal that a packet
294 * should be silently discarded. This is typically
295 * because we asked key management for an SA and
296 * it was delayed (e.g. kicked up to IKE).
297 */
298 if (error == -EINVAL)
299 error = 0;
300 goto freehdrs;
301 }
302 }
303#endif /* IPSEC */
304
305
306 if (needipsec &&
307 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
308 in6_delayed_cksum(m);
309 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
310 }
311
312
313 /*
314 * If we need IPsec, or there is at least one extension header,
315 * separate IP6 header from the payload.
316 */
317 if ((needipsec || optlen) && !hdrsplit) {
318 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
319 m = NULL;
320 goto freehdrs;
321 }
322 m = exthdrs.ip6e_ip6;
323 hdrsplit++;
324 }
325
326 /* adjust pointer */
327 ip6 = mtod(m, struct ip6_hdr *);
328
329 /* adjust mbuf packet header length */
330 m->m_pkthdr.len += optlen;
331 plen = m->m_pkthdr.len - sizeof(*ip6);
332
333 /* If this is a jumbo payload, insert a jumbo payload option. */
334 if (plen > IPV6_MAXPACKET) {
335 if (!hdrsplit) {
336 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
337 m = NULL;
338 goto freehdrs;
339 }
340 m = exthdrs.ip6e_ip6;
341 hdrsplit++;
342 }
343 /* adjust pointer */
344 ip6 = mtod(m, struct ip6_hdr *);
345 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
346 goto freehdrs;
347 optlen += 8; /* XXX JUMBOOPTLEN */
348 ip6->ip6_plen = 0;
349 } else
350 ip6->ip6_plen = htons(plen);
351
352 /*
353 * Concatenate headers and fill in next header fields.
354 * Here we have, on "m"
355 * IPv6 payload
356 * and we insert headers accordingly. Finally, we should be getting:
357 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
358 *
359 * during the header composing process, "m" points to IPv6 header.
360 * "mprev" points to an extension header prior to esp.
361 */
362 {
363 u_char *nexthdrp = &ip6->ip6_nxt;
364 struct mbuf *mprev = m;
365
366 /*
367 * we treat dest2 specially. this makes IPsec processing
368 * much easier. the goal here is to make mprev point the
369 * mbuf prior to dest2.
370 *
371 * result: IPv6 dest2 payload
372 * m and mprev will point to IPv6 header.
373 */
374 if (exthdrs.ip6e_dest2) {
375 if (!hdrsplit)
376 panic("assumption failed: hdr not split");
377 exthdrs.ip6e_dest2->m_next = m->m_next;
378 m->m_next = exthdrs.ip6e_dest2;
379 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
380 ip6->ip6_nxt = IPPROTO_DSTOPTS;
381 }
382
383#define MAKE_CHAIN(m, mp, p, i)\
384 do {\
385 if (m) {\
386 if (!hdrsplit) \
387 panic("assumption failed: hdr not split"); \
388 *mtod((m), u_char *) = *(p);\
389 *(p) = (i);\
390 p = mtod((m), u_char *);\
391 (m)->m_next = (mp)->m_next;\
392 (mp)->m_next = (m);\
393 (mp) = (m);\
394 }\
395 } while (/*CONSTCOND*/ 0)
396 /*
397 * result: IPv6 hbh dest1 rthdr dest2 payload
398 * m will point to IPv6 header. mprev will point to the
399 * extension header prior to dest2 (rthdr in the above case).
400 */
401 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
402 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
403 IPPROTO_DSTOPTS);
404 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
405 IPPROTO_ROUTING);
406
407 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
408 sizeof(struct ip6_hdr) + optlen);
409 }
410
411 /* Need to save for pmtu */
412 finaldst = ip6->ip6_dst;
413
414 /*
415 * If there is a routing header, replace destination address field
416 * with the first hop of the routing header.
417 */
418 if (exthdrs.ip6e_rthdr) {
419 struct ip6_rthdr *rh;
420
421 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
422 struct ip6_rthdr *));
423
424 error = ip6_handle_rthdr(rh, ip6);
425 if (error != 0)
426 goto bad;
427 }
428
429 /* Source address validation */
430 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
431 (flags & IPV6_UNSPECSRC) == 0) {
432 error = EOPNOTSUPP;
433 IP6_STATINC(IP6_STAT_BADSCOPE);
434 goto bad;
435 }
436 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
437 error = EOPNOTSUPP;
438 IP6_STATINC(IP6_STAT_BADSCOPE);
439 goto bad;
440 }
441
442 IP6_STATINC(IP6_STAT_LOCALOUT);
443
444 /*
445 * Route packet.
446 */
447 /* initialize cached route */
448 if (ro == NULL) {
449 memset(&ip6route, 0, sizeof(ip6route));
450 ro = &ip6route;
451 }
452 ro_pmtu = ro;
453 if (opt && opt->ip6po_rthdr)
454 ro = &opt->ip6po_route;
455
456 /*
457 * if specified, try to fill in the traffic class field.
458 * do not override if a non-zero value is already set.
459 * we check the diffserv field and the ecn field separately.
460 */
461 if (opt && opt->ip6po_tclass >= 0) {
462 int mask = 0;
463
464 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
465 mask |= 0xfc;
466 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
467 mask |= 0x03;
468 if (mask != 0)
469 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
470 }
471
472 /* fill in or override the hop limit field, if necessary. */
473 if (opt && opt->ip6po_hlim != -1)
474 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
475 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
476 if (im6o != NULL)
477 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
478 else
479 ip6->ip6_hlim = ip6_defmcasthlim;
480 }
481
482#ifdef IPSEC
483 if (needipsec) {
484 int s = splsoftnet();
485 error = ipsec6_process_packet(m, sp->req);
486
487 /*
488 * Preserve KAME behaviour: ENOENT can be returned
489 * when an SA acquire is in progress. Don't propagate
490 * this to user-level; it confuses applications.
491 * XXX this will go away when the SADB is redone.
492 */
493 if (error == ENOENT)
494 error = 0;
495 splx(s);
496 goto done;
497 }
498#endif /* IPSEC */
499
500 /* adjust pointer */
501 ip6 = mtod(m, struct ip6_hdr *);
502
503 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
504
505 /* We do not need a route for multicast */
506 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
507 struct in6_pktinfo *pi = NULL;
508
509 /*
510 * If the outgoing interface for the address is specified by
511 * the caller, use it.
512 */
513 if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
514 /* XXX boundary check is assumed to be already done. */
515 ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
516 } else if (im6o != NULL) {
517 ifp = if_get_byindex(im6o->im6o_multicast_if_index,
518 &psref);
519 }
520 }
521
522 if (ifp == NULL) {
523 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
524 if (error != 0)
525 goto bad;
526 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
527 }
528
529 if (rt == NULL) {
530 /*
531 * If in6_selectroute() does not return a route entry,
532 * dst may not have been updated.
533 */
534 error = rtcache_setdst(ro, sin6tosa(&dst_sa));
535 if (error) {
536 goto bad;
537 }
538 }
539
540 /*
541 * then rt (for unicast) and ifp must be non-NULL valid values.
542 */
543 if ((flags & IPV6_FORWARDING) == 0) {
544 /* XXX: the FORWARDING flag can be set for mrouting. */
545 in6_ifstat_inc(ifp, ifs6_out_request);
546 }
547 if (rt != NULL) {
548 ia = (struct in6_ifaddr *)(rt->rt_ifa);
549 rt->rt_use++;
550 }
551
552 /*
553 * The outgoing interface must be in the zone of source and
554 * destination addresses. We should use ia_ifp to support the
555 * case of sending packets to an address of our own.
556 */
557 if (ia != NULL && ia->ia_ifp) {
558 origifp = ia->ia_ifp;
559 if (if_is_deactivated(origifp))
560 goto bad;
561 if_acquire_NOMPSAFE(origifp, &psref_ia);
562 release_psref_ia = true;
563 } else
564 origifp = ifp;
565
566 src0 = ip6->ip6_src;
567 if (in6_setscope(&src0, origifp, &zone))
568 goto badscope;
569 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
570 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
571 goto badscope;
572
573 dst0 = ip6->ip6_dst;
574 if (in6_setscope(&dst0, origifp, &zone))
575 goto badscope;
576 /* re-initialize to be sure */
577 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
578 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
579 goto badscope;
580
581 /* scope check is done. */
582
583 /* Ensure we only send from a valid address. */
584 if ((error = ip6_ifaddrvalid(&src0)) != 0) {
585 nd6log(LOG_ERR,
586 "refusing to send from invalid address %s (pid %d)\n",
587 ip6_sprintf(&src0), curproc->p_pid);
588 IP6_STATINC(IP6_STAT_ODROPPED);
589 in6_ifstat_inc(origifp, ifs6_out_discard);
590 if (error == 1)
591 /*
592 * Address exists, but is tentative or detached.
593 * We can't send from it because it's invalid,
594 * so we drop the packet.
595 */
596 error = 0;
597 else
598 error = EADDRNOTAVAIL;
599 goto bad;
600 }
601
602 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
603 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
604 dst = satocsin6(rt->rt_gateway);
605 else
606 dst = satocsin6(rtcache_getdst(ro));
607
608 /*
609 * XXXXXX: original code follows:
610 */
611 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
612 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
613 else {
614 struct in6_multi *in6m;
615
616 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
617
618 in6_ifstat_inc(ifp, ifs6_out_mcast);
619
620 /*
621 * Confirm that the outgoing interface supports multicast.
622 */
623 if (!(ifp->if_flags & IFF_MULTICAST)) {
624 IP6_STATINC(IP6_STAT_NOROUTE);
625 in6_ifstat_inc(ifp, ifs6_out_discard);
626 error = ENETUNREACH;
627 goto bad;
628 }
629
630 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
631 if (in6m != NULL &&
632 (im6o == NULL || im6o->im6o_multicast_loop)) {
633 /*
634 * If we belong to the destination multicast group
635 * on the outgoing interface, and the caller did not
636 * forbid loopback, loop back a copy.
637 */
638 KASSERT(dst != NULL);
639 ip6_mloopback(ifp, m, dst);
640 } else {
641 /*
642 * If we are acting as a multicast router, perform
643 * multicast forwarding as if the packet had just
644 * arrived on the interface to which we are about
645 * to send. The multicast forwarding function
646 * recursively calls this function, using the
647 * IPV6_FORWARDING flag to prevent infinite recursion.
648 *
649 * Multicasts that are looped back by ip6_mloopback(),
650 * above, will be forwarded by the ip6_input() routine,
651 * if necessary.
652 */
653 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
654 if (ip6_mforward(ip6, ifp, m) != 0) {
655 m_freem(m);
656 goto done;
657 }
658 }
659 }
660 /*
661 * Multicasts with a hoplimit of zero may be looped back,
662 * above, but must not be transmitted on a network.
663 * Also, multicasts addressed to the loopback interface
664 * are not sent -- the above call to ip6_mloopback() will
665 * loop back a copy if this host actually belongs to the
666 * destination group on the loopback interface.
667 */
668 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
669 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
670 m_freem(m);
671 goto done;
672 }
673 }
674
675 /*
676 * Fill the outgoing inteface to tell the upper layer
677 * to increment per-interface statistics.
678 */
679 if (ifpp)
680 *ifpp = ifp;
681
682 /* Determine path MTU. */
683 /*
684 * ro_pmtu represent final destination while
685 * ro might represent immediate destination.
686 * Use ro_pmtu destination since MTU might differ.
687 */
688 if (ro_pmtu != ro) {
689 union {
690 struct sockaddr dst;
691 struct sockaddr_in6 dst6;
692 } u;
693
694 /* ro_pmtu may not have a cache */
695 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
696 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
697 } else
698 rt_pmtu = rtcache_validate(ro_pmtu);
699 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
700 if (error != 0)
701 goto bad;
702
703 /*
704 * The caller of this function may specify to use the minimum MTU
705 * in some cases.
706 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
707 * setting. The logic is a bit complicated; by default, unicast
708 * packets will follow path MTU while multicast packets will be sent at
709 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
710 * including unicast ones will be sent at the minimum MTU. Multicast
711 * packets will always be sent at the minimum MTU unless
712 * IP6PO_MINMTU_DISABLE is explicitly specified.
713 * See RFC 3542 for more details.
714 */
715 if (mtu > IPV6_MMTU) {
716 if ((flags & IPV6_MINMTU))
717 mtu = IPV6_MMTU;
718 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
719 mtu = IPV6_MMTU;
720 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
721 (opt == NULL ||
722 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
723 mtu = IPV6_MMTU;
724 }
725 }
726
727 /*
728 * clear embedded scope identifiers if necessary.
729 * in6_clearscope will touch the addresses only when necessary.
730 */
731 in6_clearscope(&ip6->ip6_src);
732 in6_clearscope(&ip6->ip6_dst);
733
734 /*
735 * If the outgoing packet contains a hop-by-hop options header,
736 * it must be examined and processed even by the source node.
737 * (RFC 2460, section 4.)
738 */
739 if (ip6->ip6_nxt == IPV6_HOPOPTS) {
740 u_int32_t dummy1; /* XXX unused */
741 u_int32_t dummy2; /* XXX unused */
742 int hoff = sizeof(struct ip6_hdr);
743
744 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
745 /* m was already freed at this point */
746 error = EINVAL;/* better error? */
747 goto done;
748 }
749
750 ip6 = mtod(m, struct ip6_hdr *);
751 }
752
753 /*
754 * Run through list of hooks for output packets.
755 */
756 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
757 goto done;
758 if (m == NULL)
759 goto done;
760 ip6 = mtod(m, struct ip6_hdr *);
761
762 /*
763 * Send the packet to the outgoing interface.
764 * If necessary, do IPv6 fragmentation before sending.
765 *
766 * the logic here is rather complex:
767 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
768 * 1-a: send as is if tlen <= path mtu
769 * 1-b: fragment if tlen > path mtu
770 *
771 * 2: if user asks us not to fragment (dontfrag == 1)
772 * 2-a: send as is if tlen <= interface mtu
773 * 2-b: error if tlen > interface mtu
774 *
775 * 3: if we always need to attach fragment header (alwaysfrag == 1)
776 * always fragment
777 *
778 * 4: if dontfrag == 1 && alwaysfrag == 1
779 * error, as we cannot handle this conflicting request
780 */
781 tlen = m->m_pkthdr.len;
782 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
783 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
784 dontfrag = 1;
785 else
786 dontfrag = 0;
787
788 if (dontfrag && alwaysfrag) { /* case 4 */
789 /* conflicting request - can't transmit */
790 error = EMSGSIZE;
791 goto bad;
792 }
793 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */
794 /*
795 * Even if the DONTFRAG option is specified, we cannot send the
796 * packet when the data length is larger than the MTU of the
797 * outgoing interface.
798 * Notify the error by sending IPV6_PATHMTU ancillary data as
799 * well as returning an error code (the latter is not described
800 * in the API spec.)
801 */
802 u_int32_t mtu32;
803 struct ip6ctlparam ip6cp;
804
805 mtu32 = (u_int32_t)mtu;
806 memset(&ip6cp, 0, sizeof(ip6cp));
807 ip6cp.ip6c_cmdarg = (void *)&mtu32;
808 pfctlinput2(PRC_MSGSIZE,
809 rtcache_getdst(ro_pmtu), &ip6cp);
810
811 error = EMSGSIZE;
812 goto bad;
813 }
814
815 /*
816 * transmit packet without fragmentation
817 */
818 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
819 /* case 1-a and 2-a */
820 struct in6_ifaddr *ia6;
821 int sw_csum;
822 int s;
823
824 ip6 = mtod(m, struct ip6_hdr *);
825 s = pserialize_read_enter();
826 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
827 if (ia6) {
828 /* Record statistics for this interface address. */
829 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
830 }
831 pserialize_read_exit(s);
832
833 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
834 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
835 if (IN6_NEED_CHECKSUM(ifp,
836 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
837 in6_delayed_cksum(m);
838 }
839 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
840 }
841
842 KASSERT(dst != NULL);
843 if (__predict_true(!tso ||
844 (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
845 error = nd6_output(ifp, origifp, m, dst, rt);
846 } else {
847 error = ip6_tso_output(ifp, origifp, m, dst, rt);
848 }
849 goto done;
850 }
851
852 if (tso) {
853 error = EINVAL; /* XXX */
854 goto bad;
855 }
856
857 /*
858 * try to fragment the packet. case 1-b and 3
859 */
860 if (mtu < IPV6_MMTU) {
861 /* path MTU cannot be less than IPV6_MMTU */
862 error = EMSGSIZE;
863 in6_ifstat_inc(ifp, ifs6_out_fragfail);
864 goto bad;
865 } else if (ip6->ip6_plen == 0) {
866 /* jumbo payload cannot be fragmented */
867 error = EMSGSIZE;
868 in6_ifstat_inc(ifp, ifs6_out_fragfail);
869 goto bad;
870 } else {
871 struct mbuf **mnext, *m_frgpart;
872 struct ip6_frag *ip6f;
873 u_int32_t id = htonl(ip6_randomid());
874 u_char nextproto;
875#if 0 /* see below */
876 struct ip6ctlparam ip6cp;
877 u_int32_t mtu32;
878#endif
879
880 /*
881 * Too large for the destination or interface;
882 * fragment if possible.
883 * Must be able to put at least 8 bytes per fragment.
884 */
885 hlen = unfragpartlen;
886 if (mtu > IPV6_MAXPACKET)
887 mtu = IPV6_MAXPACKET;
888
889#if 0
890 /*
891 * It is believed this code is a leftover from the
892 * development of the IPV6_RECVPATHMTU sockopt and
893 * associated work to implement RFC3542.
894 * It's not entirely clear what the intent of the API
895 * is at this point, so disable this code for now.
896 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
897 * will send notifications if the application requests.
898 */
899
900 /* Notify a proper path MTU to applications. */
901 mtu32 = (u_int32_t)mtu;
902 memset(&ip6cp, 0, sizeof(ip6cp));
903 ip6cp.ip6c_cmdarg = (void *)&mtu32;
904 pfctlinput2(PRC_MSGSIZE,
905 rtcache_getdst(ro_pmtu), &ip6cp);
906#endif
907
908 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
909 if (len < 8) {
910 error = EMSGSIZE;
911 in6_ifstat_inc(ifp, ifs6_out_fragfail);
912 goto bad;
913 }
914
915 mnext = &m->m_nextpkt;
916
917 /*
918 * Change the next header field of the last header in the
919 * unfragmentable part.
920 */
921 if (exthdrs.ip6e_rthdr) {
922 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
923 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
924 } else if (exthdrs.ip6e_dest1) {
925 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
926 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
927 } else if (exthdrs.ip6e_hbh) {
928 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
929 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
930 } else {
931 nextproto = ip6->ip6_nxt;
932 ip6->ip6_nxt = IPPROTO_FRAGMENT;
933 }
934
935 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
936 != 0) {
937 if (IN6_NEED_CHECKSUM(ifp,
938 m->m_pkthdr.csum_flags &
939 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
940 in6_delayed_cksum(m);
941 }
942 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
943 }
944
945 /*
946 * Loop through length of segment after first fragment,
947 * make new header and copy data of each part and link onto
948 * chain.
949 */
950 m0 = m;
951 for (off = hlen; off < tlen; off += len) {
952 struct mbuf *mlast;
953
954 MGETHDR(m, M_DONTWAIT, MT_HEADER);
955 if (!m) {
956 error = ENOBUFS;
957 IP6_STATINC(IP6_STAT_ODROPPED);
958 goto sendorfree;
959 }
960 m_reset_rcvif(m);
961 m->m_flags = m0->m_flags & M_COPYFLAGS;
962 *mnext = m;
963 mnext = &m->m_nextpkt;
964 m->m_data += max_linkhdr;
965 mhip6 = mtod(m, struct ip6_hdr *);
966 *mhip6 = *ip6;
967 m->m_len = sizeof(*mhip6);
968 /*
969 * ip6f must be valid if error is 0. But how
970 * can a compiler be expected to infer this?
971 */
972 ip6f = NULL;
973 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
974 if (error) {
975 IP6_STATINC(IP6_STAT_ODROPPED);
976 goto sendorfree;
977 }
978 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
979 if (off + len >= tlen)
980 len = tlen - off;
981 else
982 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
983 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
984 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
985 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
986 error = ENOBUFS;
987 IP6_STATINC(IP6_STAT_ODROPPED);
988 goto sendorfree;
989 }
990 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
991 ;
992 mlast->m_next = m_frgpart;
993 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
994 m_reset_rcvif(m);
995 ip6f->ip6f_reserved = 0;
996 ip6f->ip6f_ident = id;
997 ip6f->ip6f_nxt = nextproto;
998 IP6_STATINC(IP6_STAT_OFRAGMENTS);
999 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1000 }
1001
1002 in6_ifstat_inc(ifp, ifs6_out_fragok);
1003 }
1004
1005 /*
1006 * Remove leading garbages.
1007 */
1008sendorfree:
1009 m = m0->m_nextpkt;
1010 m0->m_nextpkt = 0;
1011 m_freem(m0);
1012 for (m0 = m; m; m = m0) {
1013 m0 = m->m_nextpkt;
1014 m->m_nextpkt = 0;
1015 if (error == 0) {
1016 struct in6_ifaddr *ia6;
1017 int s;
1018 ip6 = mtod(m, struct ip6_hdr *);
1019 s = pserialize_read_enter();
1020 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1021 if (ia6) {
1022 /*
1023 * Record statistics for this interface
1024 * address.
1025 */
1026 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1027 m->m_pkthdr.len;
1028 }
1029 pserialize_read_exit(s);
1030 KASSERT(dst != NULL);
1031 error = nd6_output(ifp, origifp, m, dst, rt);
1032 } else
1033 m_freem(m);
1034 }
1035
1036 if (error == 0)
1037 IP6_STATINC(IP6_STAT_FRAGMENTED);
1038
1039done:
1040 if (ro == &ip6route)
1041 rtcache_free(&ip6route);
1042
1043#ifdef IPSEC
1044 if (sp != NULL)
1045 KEY_FREESP(&sp);
1046#endif /* IPSEC */
1047
1048 if_put(ifp, &psref);
1049 if (release_psref_ia)
1050 if_put(origifp, &psref_ia);
1051 curlwp_bindx(bound);
1052
1053 return (error);
1054
1055freehdrs:
1056 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1057 m_freem(exthdrs.ip6e_dest1);
1058 m_freem(exthdrs.ip6e_rthdr);
1059 m_freem(exthdrs.ip6e_dest2);
1060 /* FALLTHROUGH */
1061bad:
1062 m_freem(m);
1063 goto done;
1064badscope:
1065 IP6_STATINC(IP6_STAT_BADSCOPE);
1066 in6_ifstat_inc(origifp, ifs6_out_discard);
1067 if (error == 0)
1068 error = EHOSTUNREACH; /* XXX */
1069 goto bad;
1070}
1071
1072static int
1073ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1074{
1075 struct mbuf *m;
1076
1077 if (hlen > MCLBYTES)
1078 return (ENOBUFS); /* XXX */
1079
1080 MGET(m, M_DONTWAIT, MT_DATA);
1081 if (!m)
1082 return (ENOBUFS);
1083
1084 if (hlen > MLEN) {
1085 MCLGET(m, M_DONTWAIT);
1086 if ((m->m_flags & M_EXT) == 0) {
1087 m_free(m);
1088 return (ENOBUFS);
1089 }
1090 }
1091 m->m_len = hlen;
1092 if (hdr)
1093 bcopy(hdr, mtod(m, void *), hlen);
1094
1095 *mp = m;
1096 return (0);
1097}
1098
1099/*
1100 * Process a delayed payload checksum calculation.
1101 */
1102void
1103in6_delayed_cksum(struct mbuf *m)
1104{
1105 uint16_t csum, offset;
1106
1107 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1108 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1109 KASSERT((m->m_pkthdr.csum_flags
1110 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1111
1112 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1113 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1114 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1115 csum = 0xffff;
1116 }
1117
1118 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1119 if ((offset + sizeof(csum)) > m->m_len) {
1120 m_copyback(m, offset, sizeof(csum), &csum);
1121 } else {
1122 *(uint16_t *)(mtod(m, char *) + offset) = csum;
1123 }
1124}
1125
1126/*
1127 * Insert jumbo payload option.
1128 */
1129static int
1130ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1131{
1132 struct mbuf *mopt;
1133 u_int8_t *optbuf;
1134 u_int32_t v;
1135
1136#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1137
1138 /*
1139 * If there is no hop-by-hop options header, allocate new one.
1140 * If there is one but it doesn't have enough space to store the
1141 * jumbo payload option, allocate a cluster to store the whole options.
1142 * Otherwise, use it to store the options.
1143 */
1144 if (exthdrs->ip6e_hbh == 0) {
1145 MGET(mopt, M_DONTWAIT, MT_DATA);
1146 if (mopt == 0)
1147 return (ENOBUFS);
1148 mopt->m_len = JUMBOOPTLEN;
1149 optbuf = mtod(mopt, u_int8_t *);
1150 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1151 exthdrs->ip6e_hbh = mopt;
1152 } else {
1153 struct ip6_hbh *hbh;
1154
1155 mopt = exthdrs->ip6e_hbh;
1156 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1157 /*
1158 * XXX assumption:
1159 * - exthdrs->ip6e_hbh is not referenced from places
1160 * other than exthdrs.
1161 * - exthdrs->ip6e_hbh is not an mbuf chain.
1162 */
1163 int oldoptlen = mopt->m_len;
1164 struct mbuf *n;
1165
1166 /*
1167 * XXX: give up if the whole (new) hbh header does
1168 * not fit even in an mbuf cluster.
1169 */
1170 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1171 return (ENOBUFS);
1172
1173 /*
1174 * As a consequence, we must always prepare a cluster
1175 * at this point.
1176 */
1177 MGET(n, M_DONTWAIT, MT_DATA);
1178 if (n) {
1179 MCLGET(n, M_DONTWAIT);
1180 if ((n->m_flags & M_EXT) == 0) {
1181 m_freem(n);
1182 n = NULL;
1183 }
1184 }
1185 if (!n)
1186 return (ENOBUFS);
1187 n->m_len = oldoptlen + JUMBOOPTLEN;
1188 bcopy(mtod(mopt, void *), mtod(n, void *),
1189 oldoptlen);
1190 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1191 m_freem(mopt);
1192 mopt = exthdrs->ip6e_hbh = n;
1193 } else {
1194 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1195 mopt->m_len += JUMBOOPTLEN;
1196 }
1197 optbuf[0] = IP6OPT_PADN;
1198 optbuf[1] = 0;
1199
1200 /*
1201 * Adjust the header length according to the pad and
1202 * the jumbo payload option.
1203 */
1204 hbh = mtod(mopt, struct ip6_hbh *);
1205 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1206 }
1207
1208 /* fill in the option. */
1209 optbuf[2] = IP6OPT_JUMBO;
1210 optbuf[3] = 4;
1211 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1212 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1213
1214 /* finally, adjust the packet header length */
1215 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1216
1217 return (0);
1218#undef JUMBOOPTLEN
1219}
1220
1221/*
1222 * Insert fragment header and copy unfragmentable header portions.
1223 *
1224 * *frghdrp will not be read, and it is guaranteed that either an
1225 * error is returned or that *frghdrp will point to space allocated
1226 * for the fragment header.
1227 */
1228static int
1229ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1230 struct ip6_frag **frghdrp)
1231{
1232 struct mbuf *n, *mlast;
1233
1234 if (hlen > sizeof(struct ip6_hdr)) {
1235 n = m_copym(m0, sizeof(struct ip6_hdr),
1236 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1237 if (n == 0)
1238 return (ENOBUFS);
1239 m->m_next = n;
1240 } else
1241 n = m;
1242
1243 /* Search for the last mbuf of unfragmentable part. */
1244 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1245 ;
1246
1247 if ((mlast->m_flags & M_EXT) == 0 &&
1248 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1249 /* use the trailing space of the last mbuf for the fragment hdr */
1250 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1251 mlast->m_len);
1252 mlast->m_len += sizeof(struct ip6_frag);
1253 m->m_pkthdr.len += sizeof(struct ip6_frag);
1254 } else {
1255 /* allocate a new mbuf for the fragment header */
1256 struct mbuf *mfrg;
1257
1258 MGET(mfrg, M_DONTWAIT, MT_DATA);
1259 if (mfrg == 0)
1260 return (ENOBUFS);
1261 mfrg->m_len = sizeof(struct ip6_frag);
1262 *frghdrp = mtod(mfrg, struct ip6_frag *);
1263 mlast->m_next = mfrg;
1264 }
1265
1266 return (0);
1267}
1268
1269static int
1270ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
1271 int *alwaysfragp)
1272{
1273 u_int32_t mtu = 0;
1274 int alwaysfrag = 0;
1275 int error = 0;
1276
1277 if (rt != NULL) {
1278 u_int32_t ifmtu;
1279
1280 if (ifp == NULL)
1281 ifp = rt->rt_ifp;
1282 ifmtu = IN6_LINKMTU(ifp);
1283 mtu = rt->rt_rmx.rmx_mtu;
1284 if (mtu == 0)
1285 mtu = ifmtu;
1286 else if (mtu < IPV6_MMTU) {
1287 /*
1288 * RFC2460 section 5, last paragraph:
1289 * if we record ICMPv6 too big message with
1290 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1291 * or smaller, with fragment header attached.
1292 * (fragment header is needed regardless from the
1293 * packet size, for translators to identify packets)
1294 */
1295 alwaysfrag = 1;
1296 mtu = IPV6_MMTU;
1297 } else if (mtu > ifmtu) {
1298 /*
1299 * The MTU on the route is larger than the MTU on
1300 * the interface! This shouldn't happen, unless the
1301 * MTU of the interface has been changed after the
1302 * interface was brought up. Change the MTU in the
1303 * route to match the interface MTU (as long as the
1304 * field isn't locked).
1305 */
1306 mtu = ifmtu;
1307 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1308 rt->rt_rmx.rmx_mtu = mtu;
1309 }
1310 } else if (ifp) {
1311 mtu = IN6_LINKMTU(ifp);
1312 } else
1313 error = EHOSTUNREACH; /* XXX */
1314
1315 *mtup = mtu;
1316 if (alwaysfragp)
1317 *alwaysfragp = alwaysfrag;
1318 return (error);
1319}
1320
1321/*
1322 * IP6 socket option processing.
1323 */
1324int
1325ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1326{
1327 int optdatalen, uproto;
1328 void *optdata;
1329 struct in6pcb *in6p = sotoin6pcb(so);
1330 struct ip_moptions **mopts;
1331 int error, optval;
1332 int level, optname;
1333
1334 KASSERT(sopt != NULL);
1335
1336 level = sopt->sopt_level;
1337 optname = sopt->sopt_name;
1338
1339 error = optval = 0;
1340 uproto = (int)so->so_proto->pr_protocol;
1341
1342 switch (level) {
1343 case IPPROTO_IP:
1344 switch (optname) {
1345 case IP_ADD_MEMBERSHIP:
1346 case IP_DROP_MEMBERSHIP:
1347 case IP_MULTICAST_IF:
1348 case IP_MULTICAST_LOOP:
1349 case IP_MULTICAST_TTL:
1350 mopts = &in6p->in6p_v4moptions;
1351 switch (op) {
1352 case PRCO_GETOPT:
1353 return ip_getmoptions(*mopts, sopt);
1354 case PRCO_SETOPT:
1355 return ip_setmoptions(mopts, sopt);
1356 default:
1357 return EINVAL;
1358 }
1359 default:
1360 return ENOPROTOOPT;
1361 }
1362 case IPPROTO_IPV6:
1363 break;
1364 default:
1365 return ENOPROTOOPT;
1366 }
1367 switch (op) {
1368 case PRCO_SETOPT:
1369 switch (optname) {
1370#ifdef RFC2292
1371 case IPV6_2292PKTOPTIONS:
1372 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1373 break;
1374#endif
1375
1376 /*
1377 * Use of some Hop-by-Hop options or some
1378 * Destination options, might require special
1379 * privilege. That is, normal applications
1380 * (without special privilege) might be forbidden
1381 * from setting certain options in outgoing packets,
1382 * and might never see certain options in received
1383 * packets. [RFC 2292 Section 6]
1384 * KAME specific note:
1385 * KAME prevents non-privileged users from sending or
1386 * receiving ANY hbh/dst options in order to avoid
1387 * overhead of parsing options in the kernel.
1388 */
1389 case IPV6_RECVHOPOPTS:
1390 case IPV6_RECVDSTOPTS:
1391 case IPV6_RECVRTHDRDSTOPTS:
1392 error = kauth_authorize_network(kauth_cred_get(),
1393 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1394 NULL, NULL, NULL);
1395 if (error)
1396 break;
1397 /* FALLTHROUGH */
1398 case IPV6_UNICAST_HOPS:
1399 case IPV6_HOPLIMIT:
1400 case IPV6_FAITH:
1401
1402 case IPV6_RECVPKTINFO:
1403 case IPV6_RECVHOPLIMIT:
1404 case IPV6_RECVRTHDR:
1405 case IPV6_RECVPATHMTU:
1406 case IPV6_RECVTCLASS:
1407 case IPV6_V6ONLY:
1408 error = sockopt_getint(sopt, &optval);
1409 if (error)
1410 break;
1411 switch (optname) {
1412 case IPV6_UNICAST_HOPS:
1413 if (optval < -1 || optval >= 256)
1414 error = EINVAL;
1415 else {
1416 /* -1 = kernel default */
1417 in6p->in6p_hops = optval;
1418 }
1419 break;
1420#define OPTSET(bit) \
1421do { \
1422if (optval) \
1423 in6p->in6p_flags |= (bit); \
1424else \
1425 in6p->in6p_flags &= ~(bit); \
1426} while (/*CONSTCOND*/ 0)
1427
1428#ifdef RFC2292
1429#define OPTSET2292(bit) \
1430do { \
1431in6p->in6p_flags |= IN6P_RFC2292; \
1432if (optval) \
1433 in6p->in6p_flags |= (bit); \
1434else \
1435 in6p->in6p_flags &= ~(bit); \
1436} while (/*CONSTCOND*/ 0)
1437#endif
1438
1439#define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1440
1441 case IPV6_RECVPKTINFO:
1442#ifdef RFC2292
1443 /* cannot mix with RFC2292 */
1444 if (OPTBIT(IN6P_RFC2292)) {
1445 error = EINVAL;
1446 break;
1447 }
1448#endif
1449 OPTSET(IN6P_PKTINFO);
1450 break;
1451
1452 case IPV6_HOPLIMIT:
1453 {
1454 struct ip6_pktopts **optp;
1455
1456#ifdef RFC2292
1457 /* cannot mix with RFC2292 */
1458 if (OPTBIT(IN6P_RFC2292)) {
1459 error = EINVAL;
1460 break;
1461 }
1462#endif
1463 optp = &in6p->in6p_outputopts;
1464 error = ip6_pcbopt(IPV6_HOPLIMIT,
1465 (u_char *)&optval,
1466 sizeof(optval),
1467 optp,
1468 kauth_cred_get(), uproto);
1469 break;
1470 }
1471
1472 case IPV6_RECVHOPLIMIT:
1473#ifdef RFC2292
1474 /* cannot mix with RFC2292 */
1475 if (OPTBIT(IN6P_RFC2292)) {
1476 error = EINVAL;
1477 break;
1478 }
1479#endif
1480 OPTSET(IN6P_HOPLIMIT);
1481 break;
1482
1483 case IPV6_RECVHOPOPTS:
1484#ifdef RFC2292
1485 /* cannot mix with RFC2292 */
1486 if (OPTBIT(IN6P_RFC2292)) {
1487 error = EINVAL;
1488 break;
1489 }
1490#endif
1491 OPTSET(IN6P_HOPOPTS);
1492 break;
1493
1494 case IPV6_RECVDSTOPTS:
1495#ifdef RFC2292
1496 /* cannot mix with RFC2292 */
1497 if (OPTBIT(IN6P_RFC2292)) {
1498 error = EINVAL;
1499 break;
1500 }
1501#endif
1502 OPTSET(IN6P_DSTOPTS);
1503 break;
1504
1505 case IPV6_RECVRTHDRDSTOPTS:
1506#ifdef RFC2292
1507 /* cannot mix with RFC2292 */
1508 if (OPTBIT(IN6P_RFC2292)) {
1509 error = EINVAL;
1510 break;
1511 }
1512#endif
1513 OPTSET(IN6P_RTHDRDSTOPTS);
1514 break;
1515
1516 case IPV6_RECVRTHDR:
1517#ifdef RFC2292
1518 /* cannot mix with RFC2292 */
1519 if (OPTBIT(IN6P_RFC2292)) {
1520 error = EINVAL;
1521 break;
1522 }
1523#endif
1524 OPTSET(IN6P_RTHDR);
1525 break;
1526
1527 case IPV6_FAITH:
1528 OPTSET(IN6P_FAITH);
1529 break;
1530
1531 case IPV6_RECVPATHMTU:
1532 /*
1533 * We ignore this option for TCP
1534 * sockets.
1535 * (RFC3542 leaves this case
1536 * unspecified.)
1537 */
1538 if (uproto != IPPROTO_TCP)
1539 OPTSET(IN6P_MTU);
1540 break;
1541
1542 case IPV6_V6ONLY:
1543 /*
1544 * make setsockopt(IPV6_V6ONLY)
1545 * available only prior to bind(2).
1546 * see ipng mailing list, Jun 22 2001.
1547 */
1548 if (in6p->in6p_lport ||
1549 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1550 error = EINVAL;
1551 break;
1552 }
1553#ifdef INET6_BINDV6ONLY
1554 if (!optval)
1555 error = EINVAL;
1556#else
1557 OPTSET(IN6P_IPV6_V6ONLY);
1558#endif
1559 break;
1560 case IPV6_RECVTCLASS:
1561#ifdef RFC2292
1562 /* cannot mix with RFC2292 XXX */
1563 if (OPTBIT(IN6P_RFC2292)) {
1564 error = EINVAL;
1565 break;
1566 }
1567#endif
1568 OPTSET(IN6P_TCLASS);
1569 break;
1570
1571 }
1572 break;
1573
1574 case IPV6_OTCLASS:
1575 {
1576 struct ip6_pktopts **optp;
1577 u_int8_t tclass;
1578
1579 error = sockopt_get(sopt, &tclass, sizeof(tclass));
1580 if (error)
1581 break;
1582 optp = &in6p->in6p_outputopts;
1583 error = ip6_pcbopt(optname,
1584 (u_char *)&tclass,
1585 sizeof(tclass),
1586 optp,
1587 kauth_cred_get(), uproto);
1588 break;
1589 }
1590
1591 case IPV6_TCLASS:
1592 case IPV6_DONTFRAG:
1593 case IPV6_USE_MIN_MTU:
1594 case IPV6_PREFER_TEMPADDR:
1595 error = sockopt_getint(sopt, &optval);
1596 if (error)
1597 break;
1598 {
1599 struct ip6_pktopts **optp;
1600 optp = &in6p->in6p_outputopts;
1601 error = ip6_pcbopt(optname,
1602 (u_char *)&optval,
1603 sizeof(optval),
1604 optp,
1605 kauth_cred_get(), uproto);
1606 break;
1607 }
1608
1609#ifdef RFC2292
1610 case IPV6_2292PKTINFO:
1611 case IPV6_2292HOPLIMIT:
1612 case IPV6_2292HOPOPTS:
1613 case IPV6_2292DSTOPTS:
1614 case IPV6_2292RTHDR:
1615 /* RFC 2292 */
1616 error = sockopt_getint(sopt, &optval);
1617 if (error)
1618 break;
1619
1620 switch (optname) {
1621 case IPV6_2292PKTINFO:
1622 OPTSET2292(IN6P_PKTINFO);
1623 break;
1624 case IPV6_2292HOPLIMIT:
1625 OPTSET2292(IN6P_HOPLIMIT);
1626 break;
1627 case IPV6_2292HOPOPTS:
1628 /*
1629 * Check super-user privilege.
1630 * See comments for IPV6_RECVHOPOPTS.
1631 */
1632 error =
1633 kauth_authorize_network(kauth_cred_get(),
1634 KAUTH_NETWORK_IPV6,
1635 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1636 NULL, NULL);
1637 if (error)
1638 return (error);
1639 OPTSET2292(IN6P_HOPOPTS);
1640 break;
1641 case IPV6_2292DSTOPTS:
1642 error =
1643 kauth_authorize_network(kauth_cred_get(),
1644 KAUTH_NETWORK_IPV6,
1645 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1646 NULL, NULL);
1647 if (error)
1648 return (error);
1649 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1650 break;
1651 case IPV6_2292RTHDR:
1652 OPTSET2292(IN6P_RTHDR);
1653 break;
1654 }
1655 break;
1656#endif
1657 case IPV6_PKTINFO:
1658 case IPV6_HOPOPTS:
1659 case IPV6_RTHDR:
1660 case IPV6_DSTOPTS:
1661 case IPV6_RTHDRDSTOPTS:
1662 case IPV6_NEXTHOP: {
1663 /* new advanced API (RFC3542) */
1664 void *optbuf;
1665 int optbuflen;
1666 struct ip6_pktopts **optp;
1667
1668#ifdef RFC2292
1669 /* cannot mix with RFC2292 */
1670 if (OPTBIT(IN6P_RFC2292)) {
1671 error = EINVAL;
1672 break;
1673 }
1674#endif
1675
1676 optbuflen = sopt->sopt_size;
1677 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1678 if (optbuf == NULL) {
1679 error = ENOBUFS;
1680 break;
1681 }
1682
1683 error = sockopt_get(sopt, optbuf, optbuflen);
1684 if (error) {
1685 free(optbuf, M_IP6OPT);
1686 break;
1687 }
1688 optp = &in6p->in6p_outputopts;
1689 error = ip6_pcbopt(optname, optbuf, optbuflen,
1690 optp, kauth_cred_get(), uproto);
1691
1692 free(optbuf, M_IP6OPT);
1693 break;
1694 }
1695#undef OPTSET
1696
1697 case IPV6_MULTICAST_IF:
1698 case IPV6_MULTICAST_HOPS:
1699 case IPV6_MULTICAST_LOOP:
1700 case IPV6_JOIN_GROUP:
1701 case IPV6_LEAVE_GROUP:
1702 error = ip6_setmoptions(sopt, in6p);
1703 break;
1704
1705 case IPV6_PORTRANGE:
1706 error = sockopt_getint(sopt, &optval);
1707 if (error)
1708 break;
1709
1710 switch (optval) {
1711 case IPV6_PORTRANGE_DEFAULT:
1712 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1713 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1714 break;
1715
1716 case IPV6_PORTRANGE_HIGH:
1717 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1718 in6p->in6p_flags |= IN6P_HIGHPORT;
1719 break;
1720
1721 case IPV6_PORTRANGE_LOW:
1722 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1723 in6p->in6p_flags |= IN6P_LOWPORT;
1724 break;
1725
1726 default:
1727 error = EINVAL;
1728 break;
1729 }
1730 break;
1731
1732 case IPV6_PORTALGO:
1733 error = sockopt_getint(sopt, &optval);
1734 if (error)
1735 break;
1736
1737 error = portalgo_algo_index_select(
1738 (struct inpcb_hdr *)in6p, optval);
1739 break;
1740
1741#if defined(IPSEC)
1742 case IPV6_IPSEC_POLICY:
1743 if (ipsec_enabled) {
1744 error = ipsec6_set_policy(in6p, optname,
1745 sopt->sopt_data, sopt->sopt_size,
1746 kauth_cred_get());
1747 break;
1748 }
1749 /*FALLTHROUGH*/
1750#endif /* IPSEC */
1751
1752 default:
1753 error = ENOPROTOOPT;
1754 break;
1755 }
1756 break;
1757
1758 case PRCO_GETOPT:
1759 switch (optname) {
1760#ifdef RFC2292
1761 case IPV6_2292PKTOPTIONS:
1762 /*
1763 * RFC3542 (effectively) deprecated the
1764 * semantics of the 2292-style pktoptions.
1765 * Since it was not reliable in nature (i.e.,
1766 * applications had to expect the lack of some
1767 * information after all), it would make sense
1768 * to simplify this part by always returning
1769 * empty data.
1770 */
1771 break;
1772#endif
1773
1774 case IPV6_RECVHOPOPTS:
1775 case IPV6_RECVDSTOPTS:
1776 case IPV6_RECVRTHDRDSTOPTS:
1777 case IPV6_UNICAST_HOPS:
1778 case IPV6_RECVPKTINFO:
1779 case IPV6_RECVHOPLIMIT:
1780 case IPV6_RECVRTHDR:
1781 case IPV6_RECVPATHMTU:
1782
1783 case IPV6_FAITH:
1784 case IPV6_V6ONLY:
1785 case IPV6_PORTRANGE:
1786 case IPV6_RECVTCLASS:
1787 switch (optname) {
1788
1789 case IPV6_RECVHOPOPTS:
1790 optval = OPTBIT(IN6P_HOPOPTS);
1791 break;
1792
1793 case IPV6_RECVDSTOPTS:
1794 optval = OPTBIT(IN6P_DSTOPTS);
1795 break;
1796
1797 case IPV6_RECVRTHDRDSTOPTS:
1798 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1799 break;
1800
1801 case IPV6_UNICAST_HOPS:
1802 optval = in6p->in6p_hops;
1803 break;
1804
1805 case IPV6_RECVPKTINFO:
1806 optval = OPTBIT(IN6P_PKTINFO);
1807 break;
1808
1809 case IPV6_RECVHOPLIMIT:
1810 optval = OPTBIT(IN6P_HOPLIMIT);
1811 break;
1812
1813 case IPV6_RECVRTHDR:
1814 optval = OPTBIT(IN6P_RTHDR);
1815 break;
1816
1817 case IPV6_RECVPATHMTU:
1818 optval = OPTBIT(IN6P_MTU);
1819 break;
1820
1821 case IPV6_FAITH:
1822 optval = OPTBIT(IN6P_FAITH);
1823 break;
1824
1825 case IPV6_V6ONLY:
1826 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1827 break;
1828
1829 case IPV6_PORTRANGE:
1830 {
1831 int flags;
1832 flags = in6p->in6p_flags;
1833 if (flags & IN6P_HIGHPORT)
1834 optval = IPV6_PORTRANGE_HIGH;
1835 else if (flags & IN6P_LOWPORT)
1836 optval = IPV6_PORTRANGE_LOW;
1837 else
1838 optval = 0;
1839 break;
1840 }
1841 case IPV6_RECVTCLASS:
1842 optval = OPTBIT(IN6P_TCLASS);
1843 break;
1844
1845 }
1846 if (error)
1847 break;
1848 error = sockopt_setint(sopt, optval);
1849 break;
1850
1851 case IPV6_PATHMTU:
1852 {
1853 u_long pmtu = 0;
1854 struct ip6_mtuinfo mtuinfo;
1855 struct route *ro = &in6p->in6p_route;
1856 struct rtentry *rt;
1857 union {
1858 struct sockaddr dst;
1859 struct sockaddr_in6 dst6;
1860 } u;
1861
1862 if (!(so->so_state & SS_ISCONNECTED))
1863 return (ENOTCONN);
1864 /*
1865 * XXX: we dot not consider the case of source
1866 * routing, or optional information to specify
1867 * the outgoing interface.
1868 */
1869 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
1870 rt = rtcache_lookup(ro, &u.dst);
1871 error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
1872 if (error)
1873 break;
1874 if (pmtu > IPV6_MAXPACKET)
1875 pmtu = IPV6_MAXPACKET;
1876
1877 memset(&mtuinfo, 0, sizeof(mtuinfo));
1878 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1879 optdata = (void *)&mtuinfo;
1880 optdatalen = sizeof(mtuinfo);
1881 if (optdatalen > MCLBYTES)
1882 return (EMSGSIZE); /* XXX */
1883 error = sockopt_set(sopt, optdata, optdatalen);
1884 break;
1885 }
1886
1887#ifdef RFC2292
1888 case IPV6_2292PKTINFO:
1889 case IPV6_2292HOPLIMIT:
1890 case IPV6_2292HOPOPTS:
1891 case IPV6_2292RTHDR:
1892 case IPV6_2292DSTOPTS:
1893 switch (optname) {
1894 case IPV6_2292PKTINFO:
1895 optval = OPTBIT(IN6P_PKTINFO);
1896 break;
1897 case IPV6_2292HOPLIMIT:
1898 optval = OPTBIT(IN6P_HOPLIMIT);
1899 break;
1900 case IPV6_2292HOPOPTS:
1901 optval = OPTBIT(IN6P_HOPOPTS);
1902 break;
1903 case IPV6_2292RTHDR:
1904 optval = OPTBIT(IN6P_RTHDR);
1905 break;
1906 case IPV6_2292DSTOPTS:
1907 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1908 break;
1909 }
1910 error = sockopt_setint(sopt, optval);
1911 break;
1912#endif
1913 case IPV6_PKTINFO:
1914 case IPV6_HOPOPTS:
1915 case IPV6_RTHDR:
1916 case IPV6_DSTOPTS:
1917 case IPV6_RTHDRDSTOPTS:
1918 case IPV6_NEXTHOP:
1919 case IPV6_OTCLASS:
1920 case IPV6_TCLASS:
1921 case IPV6_DONTFRAG:
1922 case IPV6_USE_MIN_MTU:
1923 case IPV6_PREFER_TEMPADDR:
1924 error = ip6_getpcbopt(in6p->in6p_outputopts,
1925 optname, sopt);
1926 break;
1927
1928 case IPV6_MULTICAST_IF:
1929 case IPV6_MULTICAST_HOPS:
1930 case IPV6_MULTICAST_LOOP:
1931 case IPV6_JOIN_GROUP:
1932 case IPV6_LEAVE_GROUP:
1933 error = ip6_getmoptions(sopt, in6p);
1934 break;
1935
1936 case IPV6_PORTALGO:
1937 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1938 error = sockopt_setint(sopt, optval);
1939 break;
1940
1941#if defined(IPSEC)
1942 case IPV6_IPSEC_POLICY:
1943 if (ipsec_used) {
1944 struct mbuf *m = NULL;
1945
1946 /*
1947 * XXX: this will return EINVAL as sopt is
1948 * empty
1949 */
1950 error = ipsec6_get_policy(in6p, sopt->sopt_data,
1951 sopt->sopt_size, &m);
1952 if (!error)
1953 error = sockopt_setmbuf(sopt, m);
1954 break;
1955 }
1956 /*FALLTHROUGH*/
1957#endif /* IPSEC */
1958
1959 default:
1960 error = ENOPROTOOPT;
1961 break;
1962 }
1963 break;
1964 }
1965 return (error);
1966}
1967
1968int
1969ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1970{
1971 int error = 0, optval;
1972 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1973 struct in6pcb *in6p = sotoin6pcb(so);
1974 int level, optname;
1975
1976 KASSERT(sopt != NULL);
1977
1978 level = sopt->sopt_level;
1979 optname = sopt->sopt_name;
1980
1981 if (level != IPPROTO_IPV6) {
1982 return ENOPROTOOPT;
1983 }
1984
1985 switch (optname) {
1986 case IPV6_CHECKSUM:
1987 /*
1988 * For ICMPv6 sockets, no modification allowed for checksum
1989 * offset, permit "no change" values to help existing apps.
1990 *
1991 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1992 * for an ICMPv6 socket will fail." The current
1993 * behavior does not meet RFC3542.
1994 */
1995 switch (op) {
1996 case PRCO_SETOPT:
1997 error = sockopt_getint(sopt, &optval);
1998 if (error)
1999 break;
2000 if ((optval % 2) != 0) {
2001 /* the API assumes even offset values */
2002 error = EINVAL;
2003 } else if (so->so_proto->pr_protocol ==
2004 IPPROTO_ICMPV6) {
2005 if (optval != icmp6off)
2006 error = EINVAL;
2007 } else
2008 in6p->in6p_cksum = optval;
2009 break;
2010
2011 case PRCO_GETOPT:
2012 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2013 optval = icmp6off;
2014 else
2015 optval = in6p->in6p_cksum;
2016
2017 error = sockopt_setint(sopt, optval);
2018 break;
2019
2020 default:
2021 error = EINVAL;
2022 break;
2023 }
2024 break;
2025
2026 default:
2027 error = ENOPROTOOPT;
2028 break;
2029 }
2030
2031 return (error);
2032}
2033
2034#ifdef RFC2292
2035/*
2036 * Set up IP6 options in pcb for insertion in output packets or
2037 * specifying behavior of outgoing packets.
2038 */
2039static int
2040ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2041 struct sockopt *sopt)
2042{
2043 struct ip6_pktopts *opt = *pktopt;
2044 struct mbuf *m;
2045 int error = 0;
2046
2047 /* turn off any old options. */
2048 if (opt) {
2049#ifdef DIAGNOSTIC
2050 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2051 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2052 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2053 printf("ip6_pcbopts: all specified options are cleared.\n");
2054#endif
2055 ip6_clearpktopts(opt, -1);
2056 } else {
2057 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2058 if (opt == NULL)
2059 return (ENOBUFS);
2060 }
2061 *pktopt = NULL;
2062
2063 if (sopt == NULL || sopt->sopt_size == 0) {
2064 /*
2065 * Only turning off any previous options, regardless of
2066 * whether the opt is just created or given.
2067 */
2068 free(opt, M_IP6OPT);
2069 return (0);
2070 }
2071
2072 /* set options specified by user. */
2073 m = sockopt_getmbuf(sopt);
2074 if (m == NULL) {
2075 free(opt, M_IP6OPT);
2076 return (ENOBUFS);
2077 }
2078
2079 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2080 so->so_proto->pr_protocol);
2081 m_freem(m);
2082 if (error != 0) {
2083 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2084 free(opt, M_IP6OPT);
2085 return (error);
2086 }
2087 *pktopt = opt;
2088 return (0);
2089}
2090#endif
2091
2092/*
2093 * initialize ip6_pktopts. beware that there are non-zero default values in
2094 * the struct.
2095 */
2096void
2097ip6_initpktopts(struct ip6_pktopts *opt)
2098{
2099
2100 memset(opt, 0, sizeof(*opt));
2101 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2102 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2103 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2104 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2105}
2106
2107#define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2108static int
2109ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2110 kauth_cred_t cred, int uproto)
2111{
2112 struct ip6_pktopts *opt;
2113
2114 if (*pktopt == NULL) {
2115 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2116 M_NOWAIT);
2117 if (*pktopt == NULL)
2118 return (ENOBUFS);
2119
2120 ip6_initpktopts(*pktopt);
2121 }
2122 opt = *pktopt;
2123
2124 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2125}
2126
2127static int
2128ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2129{
2130 void *optdata = NULL;
2131 int optdatalen = 0;
2132 struct ip6_ext *ip6e;
2133 int error = 0;
2134 struct in6_pktinfo null_pktinfo;
2135 int deftclass = 0, on;
2136 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2137 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2138
2139 switch (optname) {
2140 case IPV6_PKTINFO:
2141 if (pktopt && pktopt->ip6po_pktinfo)
2142 optdata = (void *)pktopt->ip6po_pktinfo;
2143 else {
2144 /* XXX: we don't have to do this every time... */
2145 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2146 optdata = (void *)&null_pktinfo;
2147 }
2148 optdatalen = sizeof(struct in6_pktinfo);
2149 break;
2150 case IPV6_OTCLASS:
2151 /* XXX */
2152 return (EINVAL);
2153 case IPV6_TCLASS:
2154 if (pktopt && pktopt->ip6po_tclass >= 0)
2155 optdata = (void *)&pktopt->ip6po_tclass;
2156 else
2157 optdata = (void *)&deftclass;
2158 optdatalen = sizeof(int);
2159 break;
2160 case IPV6_HOPOPTS:
2161 if (pktopt && pktopt->ip6po_hbh) {
2162 optdata = (void *)pktopt->ip6po_hbh;
2163 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2164 optdatalen = (ip6e->ip6e_len + 1) << 3;
2165 }
2166 break;
2167 case IPV6_RTHDR:
2168 if (pktopt && pktopt->ip6po_rthdr) {
2169 optdata = (void *)pktopt->ip6po_rthdr;
2170 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2171 optdatalen = (ip6e->ip6e_len + 1) << 3;
2172 }
2173 break;
2174 case IPV6_RTHDRDSTOPTS:
2175 if (pktopt && pktopt->ip6po_dest1) {
2176 optdata = (void *)pktopt->ip6po_dest1;
2177 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2178 optdatalen = (ip6e->ip6e_len + 1) << 3;
2179 }
2180 break;
2181 case IPV6_DSTOPTS:
2182 if (pktopt && pktopt->ip6po_dest2) {
2183 optdata = (void *)pktopt->ip6po_dest2;
2184 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2185 optdatalen = (ip6e->ip6e_len + 1) << 3;
2186 }
2187 break;
2188 case IPV6_NEXTHOP:
2189 if (pktopt && pktopt->ip6po_nexthop) {
2190 optdata = (void *)pktopt->ip6po_nexthop;
2191 optdatalen = pktopt->ip6po_nexthop->sa_len;
2192 }
2193 break;
2194 case IPV6_USE_MIN_MTU:
2195 if (pktopt)
2196 optdata = (void *)&pktopt->ip6po_minmtu;
2197 else
2198 optdata = (void *)&defminmtu;
2199 optdatalen = sizeof(int);
2200 break;
2201 case IPV6_DONTFRAG:
2202 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2203 on = 1;
2204 else
2205 on = 0;
2206 optdata = (void *)&on;
2207 optdatalen = sizeof(on);
2208 break;
2209 case IPV6_PREFER_TEMPADDR:
2210 if (pktopt)
2211 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2212 else
2213 optdata = (void *)&defpreftemp;
2214 optdatalen = sizeof(int);
2215 break;
2216 default: /* should not happen */
2217#ifdef DIAGNOSTIC
2218 panic("ip6_getpcbopt: unexpected option\n");
2219#endif
2220 return (ENOPROTOOPT);
2221 }
2222
2223 error = sockopt_set(sopt, optdata, optdatalen);
2224
2225 return (error);
2226}
2227
2228void
2229ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2230{
2231 if (optname == -1 || optname == IPV6_PKTINFO) {
2232 if (pktopt->ip6po_pktinfo)
2233 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2234 pktopt->ip6po_pktinfo = NULL;
2235 }
2236 if (optname == -1 || optname == IPV6_HOPLIMIT)
2237 pktopt->ip6po_hlim = -1;
2238 if (optname == -1 || optname == IPV6_TCLASS)
2239 pktopt->ip6po_tclass = -1;
2240 if (optname == -1 || optname == IPV6_NEXTHOP) {
2241 rtcache_free(&pktopt->ip6po_nextroute);
2242 if (pktopt->ip6po_nexthop)
2243 free(pktopt->ip6po_nexthop, M_IP6OPT);
2244 pktopt->ip6po_nexthop = NULL;
2245 }
2246 if (optname == -1 || optname == IPV6_HOPOPTS) {
2247 if (pktopt->ip6po_hbh)
2248 free(pktopt->ip6po_hbh, M_IP6OPT);
2249 pktopt->ip6po_hbh = NULL;
2250 }
2251 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2252 if (pktopt->ip6po_dest1)
2253 free(pktopt->ip6po_dest1, M_IP6OPT);
2254 pktopt->ip6po_dest1 = NULL;
2255 }
2256 if (optname == -1 || optname == IPV6_RTHDR) {
2257 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2258 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2259 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2260 rtcache_free(&pktopt->ip6po_route);
2261 }
2262 if (optname == -1 || optname == IPV6_DSTOPTS) {
2263 if (pktopt->ip6po_dest2)
2264 free(pktopt->ip6po_dest2, M_IP6OPT);
2265 pktopt->ip6po_dest2 = NULL;
2266 }
2267}
2268
2269#define PKTOPT_EXTHDRCPY(type) \
2270do { \
2271 if (src->type) { \
2272 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2273 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2274 if (dst->type == NULL) \
2275 goto bad; \
2276 memcpy(dst->type, src->type, hlen); \
2277 } \
2278} while (/*CONSTCOND*/ 0)
2279
2280static int
2281copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2282{
2283 dst->ip6po_hlim = src->ip6po_hlim;
2284 dst->ip6po_tclass = src->ip6po_tclass;
2285 dst->ip6po_flags = src->ip6po_flags;
2286 dst->ip6po_minmtu = src->ip6po_minmtu;
2287 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2288 if (src->ip6po_pktinfo) {
2289 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2290 M_IP6OPT, canwait);
2291 if (dst->ip6po_pktinfo == NULL)
2292 goto bad;
2293 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2294 }
2295 if (src->ip6po_nexthop) {
2296 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2297 M_IP6OPT, canwait);
2298 if (dst->ip6po_nexthop == NULL)
2299 goto bad;
2300 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2301 src->ip6po_nexthop->sa_len);
2302 }
2303 PKTOPT_EXTHDRCPY(ip6po_hbh);
2304 PKTOPT_EXTHDRCPY(ip6po_dest1);
2305 PKTOPT_EXTHDRCPY(ip6po_dest2);
2306 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2307 return (0);
2308
2309 bad:
2310 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2311 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2312 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2313 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2314 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2315 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2316
2317 return (ENOBUFS);
2318}
2319#undef PKTOPT_EXTHDRCPY
2320
2321struct ip6_pktopts *
2322ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2323{
2324 int error;
2325 struct ip6_pktopts *dst;
2326
2327 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2328 if (dst == NULL)
2329 return (NULL);
2330 ip6_initpktopts(dst);
2331
2332 if ((error = copypktopts(dst, src, canwait)) != 0) {
2333 free(dst, M_IP6OPT);
2334 return (NULL);
2335 }
2336
2337 return (dst);
2338}
2339
2340void
2341ip6_freepcbopts(struct ip6_pktopts *pktopt)
2342{
2343 if (pktopt == NULL)
2344 return;
2345
2346 ip6_clearpktopts(pktopt, -1);
2347
2348 free(pktopt, M_IP6OPT);
2349}
2350
2351int
2352ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v,
2353 size_t l)
2354{
2355 struct ipv6_mreq mreq;
2356 int error;
2357 struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2358 struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2359 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2360 if (error != 0)
2361 return error;
2362
2363 if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2364 /*
2365 * We use the unspecified address to specify to accept
2366 * all multicast addresses. Only super user is allowed
2367 * to do this.
2368 */
2369 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2370 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2371 return EACCES;
2372 } else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2373 // Don't bother if we are not going to use ifp.
2374 if (l == sizeof(*ia)) {
2375 memcpy(v, ia, l);
2376 return 0;
2377 }
2378 } else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2379 return EINVAL;
2380 }
2381
2382 /*
2383 * If no interface was explicitly specified, choose an
2384 * appropriate one according to the given multicast address.
2385 */
2386 if (mreq.ipv6mr_interface == 0) {
2387 struct rtentry *rt;
2388 union {
2389 struct sockaddr dst;
2390 struct sockaddr_in dst4;
2391 struct sockaddr_in6 dst6;
2392 } u;
2393 struct route ro;
2394
2395 /*
2396 * Look up the routing table for the
2397 * address, and choose the outgoing interface.
2398 * XXX: is it a good approach?
2399 */
2400 memset(&ro, 0, sizeof(ro));
2401 if (IN6_IS_ADDR_V4MAPPED(ia))
2402 sockaddr_in_init(&u.dst4, ia4, 0);
2403 else
2404 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2405 error = rtcache_setdst(&ro, &u.dst);
2406 if (error != 0)
2407 return error;
2408 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
2409 rtcache_free(&ro);
2410 } else {
2411 /*
2412 * If the interface is specified, validate it.
2413 */
2414 if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL)
2415 return ENXIO; /* XXX EINVAL? */
2416 }
2417 if (sizeof(*ia) == l)
2418 memcpy(v, ia, l);
2419 else
2420 memcpy(v, ia4, l);
2421 return 0;
2422}
2423
2424/*
2425 * Set the IP6 multicast options in response to user setsockopt().
2426 */
2427static int
2428ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2429{
2430 int error = 0;
2431 u_int loop, ifindex;
2432 struct ipv6_mreq mreq;
2433 struct in6_addr ia;
2434 struct ifnet *ifp;
2435 struct ip6_moptions *im6o = in6p->in6p_moptions;
2436 struct in6_multi_mship *imm;
2437
2438 if (im6o == NULL) {
2439 /*
2440 * No multicast option buffer attached to the pcb;
2441 * allocate one and initialize to default values.
2442 */
2443 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2444 if (im6o == NULL)
2445 return (ENOBUFS);
2446 in6p->in6p_moptions = im6o;
2447 im6o->im6o_multicast_if_index = 0;
2448 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2449 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2450 LIST_INIT(&im6o->im6o_memberships);
2451 }
2452
2453 switch (sopt->sopt_name) {
2454
2455 case IPV6_MULTICAST_IF:
2456 /*
2457 * Select the interface for outgoing multicast packets.
2458 */
2459 error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2460 if (error != 0)
2461 break;
2462
2463 if (ifindex != 0) {
2464 if ((ifp = if_byindex(ifindex)) == NULL) {
2465 error = ENXIO; /* XXX EINVAL? */
2466 break;
2467 }
2468 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2469 error = EADDRNOTAVAIL;
2470 break;
2471 }
2472 } else
2473 ifp = NULL;
2474 im6o->im6o_multicast_if_index = if_get_index(ifp);
2475 break;
2476
2477 case IPV6_MULTICAST_HOPS:
2478 {
2479 /*
2480 * Set the IP6 hoplimit for outgoing multicast packets.
2481 */
2482 int optval;
2483
2484 error = sockopt_getint(sopt, &optval);
2485 if (error != 0)
2486 break;
2487
2488 if (optval < -1 || optval >= 256)
2489 error = EINVAL;
2490 else if (optval == -1)
2491 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2492 else
2493 im6o->im6o_multicast_hlim = optval;
2494 break;
2495 }
2496
2497 case IPV6_MULTICAST_LOOP:
2498 /*
2499 * Set the loopback flag for outgoing multicast packets.
2500 * Must be zero or one.
2501 */
2502 error = sockopt_get(sopt, &loop, sizeof(loop));
2503 if (error != 0)
2504 break;
2505 if (loop > 1) {
2506 error = EINVAL;
2507 break;
2508 }
2509 im6o->im6o_multicast_loop = loop;
2510 break;
2511
2512 case IPV6_JOIN_GROUP:
2513 /*
2514 * Add a multicast group membership.
2515 * Group must be a valid IP6 multicast address.
2516 */
2517 if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia))))
2518 return error;
2519
2520 if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2521 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2522 break;
2523 }
2524 /*
2525 * See if we found an interface, and confirm that it
2526 * supports multicast
2527 */
2528 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2529 error = EADDRNOTAVAIL;
2530 break;
2531 }
2532
2533 if (in6_setscope(&ia, ifp, NULL)) {
2534 error = EADDRNOTAVAIL; /* XXX: should not happen */
2535 break;
2536 }
2537
2538 /*
2539 * See if the membership already exists.
2540 */
2541 for (imm = im6o->im6o_memberships.lh_first;
2542 imm != NULL; imm = imm->i6mm_chain.le_next)
2543 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2544 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2545 &ia))
2546 break;
2547 if (imm != NULL) {
2548 error = EADDRINUSE;
2549 break;
2550 }
2551 /*
2552 * Everything looks good; add a new record to the multicast
2553 * address list for the given interface.
2554 */
2555 imm = in6_joingroup(ifp, &ia, &error, 0);
2556 if (imm == NULL)
2557 break;
2558 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2559 break;
2560
2561 case IPV6_LEAVE_GROUP:
2562 /*
2563 * Drop a multicast group membership.
2564 * Group must be a valid IP6 multicast address.
2565 */
2566 error = sockopt_get(sopt, &mreq, sizeof(mreq));
2567 if (error != 0)
2568 break;
2569
2570 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2571 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2572 break;
2573 }
2574 /*
2575 * If an interface address was specified, get a pointer
2576 * to its ifnet structure.
2577 */
2578 if (mreq.ipv6mr_interface != 0) {
2579 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2580 error = ENXIO; /* XXX EINVAL? */
2581 break;
2582 }
2583 } else
2584 ifp = NULL;
2585
2586 /* Fill in the scope zone ID */
2587 if (ifp) {
2588 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2589 /* XXX: should not happen */
2590 error = EADDRNOTAVAIL;
2591 break;
2592 }
2593 } else if (mreq.ipv6mr_interface != 0) {
2594 /*
2595 * XXX: This case would happens when the (positive)
2596 * index is in the valid range, but the corresponding
2597 * interface has been detached dynamically. The above
2598 * check probably avoids such case to happen here, but
2599 * we check it explicitly for safety.
2600 */
2601 error = EADDRNOTAVAIL;
2602 break;
2603 } else { /* ipv6mr_interface == 0 */
2604 struct sockaddr_in6 sa6_mc;
2605
2606 /*
2607 * The API spec says as follows:
2608 * If the interface index is specified as 0, the
2609 * system may choose a multicast group membership to
2610 * drop by matching the multicast address only.
2611 * On the other hand, we cannot disambiguate the scope
2612 * zone unless an interface is provided. Thus, we
2613 * check if there's ambiguity with the default scope
2614 * zone as the last resort.
2615 */
2616 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2617 0, 0, 0);
2618 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2619 if (error != 0)
2620 break;
2621 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2622 }
2623
2624 /*
2625 * Find the membership in the membership list.
2626 */
2627 for (imm = im6o->im6o_memberships.lh_first;
2628 imm != NULL; imm = imm->i6mm_chain.le_next) {
2629 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2630 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2631 &mreq.ipv6mr_multiaddr))
2632 break;
2633 }
2634 if (imm == NULL) {
2635 /* Unable to resolve interface */
2636 error = EADDRNOTAVAIL;
2637 break;
2638 }
2639 /*
2640 * Give up the multicast address record to which the
2641 * membership points.
2642 */
2643 LIST_REMOVE(imm, i6mm_chain);
2644 in6_leavegroup(imm);
2645 break;
2646
2647 default:
2648 error = EOPNOTSUPP;
2649 break;
2650 }
2651
2652 /*
2653 * If all options have default values, no need to keep the mbuf.
2654 */
2655 if (im6o->im6o_multicast_if_index == 0 &&
2656 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2657 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2658 im6o->im6o_memberships.lh_first == NULL) {
2659 free(in6p->in6p_moptions, M_IPMOPTS);
2660 in6p->in6p_moptions = NULL;
2661 }
2662
2663 return (error);
2664}
2665
2666/*
2667 * Return the IP6 multicast options in response to user getsockopt().
2668 */
2669static int
2670ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2671{
2672 u_int optval;
2673 int error;
2674 struct ip6_moptions *im6o = in6p->in6p_moptions;
2675
2676 switch (sopt->sopt_name) {
2677 case IPV6_MULTICAST_IF:
2678 if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2679 optval = 0;
2680 else
2681 optval = im6o->im6o_multicast_if_index;
2682
2683 error = sockopt_set(sopt, &optval, sizeof(optval));
2684 break;
2685
2686 case IPV6_MULTICAST_HOPS:
2687 if (im6o == NULL)
2688 optval = ip6_defmcasthlim;
2689 else
2690 optval = im6o->im6o_multicast_hlim;
2691
2692 error = sockopt_set(sopt, &optval, sizeof(optval));
2693 break;
2694
2695 case IPV6_MULTICAST_LOOP:
2696 if (im6o == NULL)
2697 optval = IPV6_DEFAULT_MULTICAST_LOOP;
2698 else
2699 optval = im6o->im6o_multicast_loop;
2700
2701 error = sockopt_set(sopt, &optval, sizeof(optval));
2702 break;
2703
2704 default:
2705 error = EOPNOTSUPP;
2706 }
2707
2708 return (error);
2709}
2710
2711/*
2712 * Discard the IP6 multicast options.
2713 */
2714void
2715ip6_freemoptions(struct ip6_moptions *im6o)
2716{
2717 struct in6_multi_mship *imm;
2718
2719 if (im6o == NULL)
2720 return;
2721
2722 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2723 LIST_REMOVE(imm, i6mm_chain);
2724 in6_leavegroup(imm);
2725 }
2726 free(im6o, M_IPMOPTS);
2727}
2728
2729/*
2730 * Set IPv6 outgoing packet options based on advanced API.
2731 */
2732int
2733ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2734 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2735{
2736 struct cmsghdr *cm = 0;
2737
2738 if (control == NULL || opt == NULL)
2739 return (EINVAL);
2740
2741 ip6_initpktopts(opt);
2742 if (stickyopt) {
2743 int error;
2744
2745 /*
2746 * If stickyopt is provided, make a local copy of the options
2747 * for this particular packet, then override them by ancillary
2748 * objects.
2749 * XXX: copypktopts() does not copy the cached route to a next
2750 * hop (if any). This is not very good in terms of efficiency,
2751 * but we can allow this since this option should be rarely
2752 * used.
2753 */
2754 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2755 return (error);
2756 }
2757
2758 /*
2759 * XXX: Currently, we assume all the optional information is stored
2760 * in a single mbuf.
2761 */
2762 if (control->m_next)
2763 return (EINVAL);
2764
2765 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2766 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2767 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2768 int error;
2769
2770 if (control->m_len < CMSG_LEN(0))
2771 return (EINVAL);
2772
2773 cm = mtod(control, struct cmsghdr *);
2774 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2775 return (EINVAL);
2776 if (cm->cmsg_level != IPPROTO_IPV6)
2777 continue;
2778
2779 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2780 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2781 if (error)
2782 return (error);
2783 }
2784
2785 return (0);
2786}
2787
2788/*
2789 * Set a particular packet option, as a sticky option or an ancillary data
2790 * item. "len" can be 0 only when it's a sticky option.
2791 * We have 4 cases of combination of "sticky" and "cmsg":
2792 * "sticky=0, cmsg=0": impossible
2793 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2794 * "sticky=1, cmsg=0": RFC3542 socket option
2795 * "sticky=1, cmsg=1": RFC2292 socket option
2796 */
2797static int
2798ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2799 kauth_cred_t cred, int sticky, int cmsg, int uproto)
2800{
2801 int minmtupolicy;
2802 int error;
2803
2804 if (!sticky && !cmsg) {
2805#ifdef DIAGNOSTIC
2806 printf("ip6_setpktopt: impossible case\n");
2807#endif
2808 return (EINVAL);
2809 }
2810
2811 /*
2812 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2813 * not be specified in the context of RFC3542. Conversely,
2814 * RFC3542 types should not be specified in the context of RFC2292.
2815 */
2816 if (!cmsg) {
2817 switch (optname) {
2818 case IPV6_2292PKTINFO:
2819 case IPV6_2292HOPLIMIT:
2820 case IPV6_2292NEXTHOP:
2821 case IPV6_2292HOPOPTS:
2822 case IPV6_2292DSTOPTS:
2823 case IPV6_2292RTHDR:
2824 case IPV6_2292PKTOPTIONS:
2825 return (ENOPROTOOPT);
2826 }
2827 }
2828 if (sticky && cmsg) {
2829 switch (optname) {
2830 case IPV6_PKTINFO:
2831 case IPV6_HOPLIMIT:
2832 case IPV6_NEXTHOP:
2833 case IPV6_HOPOPTS:
2834 case IPV6_DSTOPTS:
2835 case IPV6_RTHDRDSTOPTS:
2836 case IPV6_RTHDR:
2837 case IPV6_USE_MIN_MTU:
2838 case IPV6_DONTFRAG:
2839 case IPV6_OTCLASS:
2840 case IPV6_TCLASS:
2841 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2842 return (ENOPROTOOPT);
2843 }
2844 }
2845
2846 switch (optname) {
2847#ifdef RFC2292
2848 case IPV6_2292PKTINFO:
2849#endif
2850 case IPV6_PKTINFO:
2851 {
2852 struct in6_pktinfo *pktinfo;
2853
2854 if (len != sizeof(struct in6_pktinfo))
2855 return (EINVAL);
2856
2857 pktinfo = (struct in6_pktinfo *)buf;
2858
2859 /*
2860 * An application can clear any sticky IPV6_PKTINFO option by
2861 * doing a "regular" setsockopt with ipi6_addr being
2862 * in6addr_any and ipi6_ifindex being zero.
2863 * [RFC 3542, Section 6]
2864 */
2865 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2866 pktinfo->ipi6_ifindex == 0 &&
2867 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2868 ip6_clearpktopts(opt, optname);
2869 break;
2870 }
2871
2872 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2873 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2874 return (EINVAL);
2875 }
2876
2877 /* Validate the interface index if specified. */
2878 if (pktinfo->ipi6_ifindex) {
2879 struct ifnet *ifp;
2880 int s = pserialize_read_enter();
2881 ifp = if_byindex(pktinfo->ipi6_ifindex);
2882 if (ifp == NULL) {
2883 pserialize_read_exit(s);
2884 return ENXIO;
2885 }
2886 pserialize_read_exit(s);
2887 }
2888
2889 /*
2890 * We store the address anyway, and let in6_selectsrc()
2891 * validate the specified address. This is because ipi6_addr
2892 * may not have enough information about its scope zone, and
2893 * we may need additional information (such as outgoing
2894 * interface or the scope zone of a destination address) to
2895 * disambiguate the scope.
2896 * XXX: the delay of the validation may confuse the
2897 * application when it is used as a sticky option.
2898 */
2899 if (opt->ip6po_pktinfo == NULL) {
2900 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2901 M_IP6OPT, M_NOWAIT);
2902 if (opt->ip6po_pktinfo == NULL)
2903 return (ENOBUFS);
2904 }
2905 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2906 break;
2907 }
2908
2909#ifdef RFC2292
2910 case IPV6_2292HOPLIMIT:
2911#endif
2912 case IPV6_HOPLIMIT:
2913 {
2914 int *hlimp;
2915
2916 /*
2917 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2918 * to simplify the ordering among hoplimit options.
2919 */
2920 if (optname == IPV6_HOPLIMIT && sticky)
2921 return (ENOPROTOOPT);
2922
2923 if (len != sizeof(int))
2924 return (EINVAL);
2925 hlimp = (int *)buf;
2926 if (*hlimp < -1 || *hlimp > 255)
2927 return (EINVAL);
2928
2929 opt->ip6po_hlim = *hlimp;
2930 break;
2931 }
2932
2933 case IPV6_OTCLASS:
2934 if (len != sizeof(u_int8_t))
2935 return (EINVAL);
2936
2937 opt->ip6po_tclass = *(u_int8_t *)buf;
2938 break;
2939
2940 case IPV6_TCLASS:
2941 {
2942 int tclass;
2943
2944 if (len != sizeof(int))
2945 return (EINVAL);
2946 tclass = *(int *)buf;
2947 if (tclass < -1 || tclass > 255)
2948 return (EINVAL);
2949
2950 opt->ip6po_tclass = tclass;
2951 break;
2952 }
2953
2954#ifdef RFC2292
2955 case IPV6_2292NEXTHOP:
2956#endif
2957 case IPV6_NEXTHOP:
2958 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2959 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2960 if (error)
2961 return (error);
2962
2963 if (len == 0) { /* just remove the option */
2964 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2965 break;
2966 }
2967
2968 /* check if cmsg_len is large enough for sa_len */
2969 if (len < sizeof(struct sockaddr) || len < *buf)
2970 return (EINVAL);
2971
2972 switch (((struct sockaddr *)buf)->sa_family) {
2973 case AF_INET6:
2974 {
2975 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2976
2977 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2978 return (EINVAL);
2979
2980 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2981 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2982 return (EINVAL);
2983 }
2984 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2985 != 0) {
2986 return (error);
2987 }
2988 break;
2989 }
2990 case AF_LINK: /* eventually be supported? */
2991 default:
2992 return (EAFNOSUPPORT);
2993 }
2994
2995 /* turn off the previous option, then set the new option. */
2996 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2997 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2998 if (opt->ip6po_nexthop == NULL)
2999 return (ENOBUFS);
3000 memcpy(opt->ip6po_nexthop, buf, *buf);
3001 break;
3002
3003#ifdef RFC2292
3004 case IPV6_2292HOPOPTS:
3005#endif
3006 case IPV6_HOPOPTS:
3007 {
3008 struct ip6_hbh *hbh;
3009 int hbhlen;
3010
3011 /*
3012 * XXX: We don't allow a non-privileged user to set ANY HbH
3013 * options, since per-option restriction has too much
3014 * overhead.
3015 */
3016 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3017 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3018 if (error)
3019 return (error);
3020
3021 if (len == 0) {
3022 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3023 break; /* just remove the option */
3024 }
3025
3026 /* message length validation */
3027 if (len < sizeof(struct ip6_hbh))
3028 return (EINVAL);
3029 hbh = (struct ip6_hbh *)buf;
3030 hbhlen = (hbh->ip6h_len + 1) << 3;
3031 if (len != hbhlen)
3032 return (EINVAL);
3033
3034 /* turn off the previous option, then set the new option. */
3035 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3036 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3037 if (opt->ip6po_hbh == NULL)
3038 return (ENOBUFS);
3039 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3040
3041 break;
3042 }
3043
3044#ifdef RFC2292
3045 case IPV6_2292DSTOPTS:
3046#endif
3047 case IPV6_DSTOPTS:
3048 case IPV6_RTHDRDSTOPTS:
3049 {
3050 struct ip6_dest *dest, **newdest = NULL;
3051 int destlen;
3052
3053 /* XXX: see the comment for IPV6_HOPOPTS */
3054 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
3055 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
3056 if (error)
3057 return (error);
3058
3059 if (len == 0) {
3060 ip6_clearpktopts(opt, optname);
3061 break; /* just remove the option */
3062 }
3063
3064 /* message length validation */
3065 if (len < sizeof(struct ip6_dest))
3066 return (EINVAL);
3067 dest = (struct ip6_dest *)buf;
3068 destlen = (dest->ip6d_len + 1) << 3;
3069 if (len != destlen)
3070 return (EINVAL);
3071 /*
3072 * Determine the position that the destination options header
3073 * should be inserted; before or after the routing header.
3074 */
3075 switch (optname) {
3076 case IPV6_2292DSTOPTS:
3077 /*
3078 * The old advanced API is ambiguous on this point.
3079 * Our approach is to determine the position based
3080 * according to the existence of a routing header.
3081 * Note, however, that this depends on the order of the
3082 * extension headers in the ancillary data; the 1st
3083 * part of the destination options header must appear
3084 * before the routing header in the ancillary data,
3085 * too.
3086 * RFC3542 solved the ambiguity by introducing
3087 * separate ancillary data or option types.
3088 */
3089 if (opt->ip6po_rthdr == NULL)
3090 newdest = &opt->ip6po_dest1;
3091 else
3092 newdest = &opt->ip6po_dest2;
3093 break;
3094 case IPV6_RTHDRDSTOPTS:
3095 newdest = &opt->ip6po_dest1;
3096 break;
3097 case IPV6_DSTOPTS:
3098 newdest = &opt->ip6po_dest2;
3099 break;
3100 }
3101
3102 /* turn off the previous option, then set the new option. */
3103 ip6_clearpktopts(opt, optname);
3104 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3105 if (*newdest == NULL)
3106 return (ENOBUFS);
3107 memcpy(*newdest, dest, destlen);
3108
3109 break;
3110 }
3111
3112#ifdef RFC2292
3113 case IPV6_2292RTHDR:
3114#endif
3115 case IPV6_RTHDR:
3116 {
3117 struct ip6_rthdr *rth;
3118 int rthlen;
3119
3120 if (len == 0) {
3121 ip6_clearpktopts(opt, IPV6_RTHDR);
3122 break; /* just remove the option */
3123 }
3124
3125 /* message length validation */
3126 if (len < sizeof(struct ip6_rthdr))
3127 return (EINVAL);
3128 rth = (struct ip6_rthdr *)buf;
3129 rthlen = (rth->ip6r_len + 1) << 3;
3130 if (len != rthlen)
3131 return (EINVAL);
3132 switch (rth->ip6r_type) {
3133 case IPV6_RTHDR_TYPE_0:
3134 if (rth->ip6r_len == 0) /* must contain one addr */
3135 return (EINVAL);
3136 if (rth->ip6r_len % 2) /* length must be even */
3137 return (EINVAL);
3138 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3139 return (EINVAL);
3140 break;
3141 default:
3142 return (EINVAL); /* not supported */
3143 }
3144 /* turn off the previous option */
3145 ip6_clearpktopts(opt, IPV6_RTHDR);
3146 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3147 if (opt->ip6po_rthdr == NULL)
3148 return (ENOBUFS);
3149 memcpy(opt->ip6po_rthdr, rth, rthlen);
3150 break;
3151 }
3152
3153 case IPV6_USE_MIN_MTU:
3154 if (len != sizeof(int))
3155 return (EINVAL);
3156 minmtupolicy = *(int *)buf;
3157 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3158 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3159 minmtupolicy != IP6PO_MINMTU_ALL) {
3160 return (EINVAL);
3161 }
3162 opt->ip6po_minmtu = minmtupolicy;
3163 break;
3164
3165 case IPV6_DONTFRAG:
3166 if (len != sizeof(int))
3167 return (EINVAL);
3168
3169 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3170 /*
3171 * we ignore this option for TCP sockets.
3172 * (RFC3542 leaves this case unspecified.)
3173 */
3174 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3175 } else
3176 opt->ip6po_flags |= IP6PO_DONTFRAG;
3177 break;
3178
3179 case IPV6_PREFER_TEMPADDR:
3180 {
3181 int preftemp;
3182
3183 if (len != sizeof(int))
3184 return (EINVAL);
3185 preftemp = *(int *)buf;
3186 switch (preftemp) {
3187 case IP6PO_TEMPADDR_SYSTEM:
3188 case IP6PO_TEMPADDR_NOTPREFER:
3189 case IP6PO_TEMPADDR_PREFER:
3190 break;
3191 default:
3192 return (EINVAL);
3193 }
3194 opt->ip6po_prefer_tempaddr = preftemp;
3195 break;
3196 }
3197
3198 default:
3199 return (ENOPROTOOPT);
3200 } /* end of switch */
3201
3202 return (0);
3203}
3204
3205/*
3206 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3207 * packet to the input queue of a specified interface. Note that this
3208 * calls the output routine of the loopback "driver", but with an interface
3209 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3210 */
3211void
3212ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3213 const struct sockaddr_in6 *dst)
3214{
3215 struct mbuf *copym;
3216 struct ip6_hdr *ip6;
3217
3218 copym = m_copy(m, 0, M_COPYALL);
3219 if (copym == NULL)
3220 return;
3221
3222 /*
3223 * Make sure to deep-copy IPv6 header portion in case the data
3224 * is in an mbuf cluster, so that we can safely override the IPv6
3225 * header portion later.
3226 */
3227 if ((copym->m_flags & M_EXT) != 0 ||
3228 copym->m_len < sizeof(struct ip6_hdr)) {
3229 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3230 if (copym == NULL)
3231 return;
3232 }
3233
3234#ifdef DIAGNOSTIC
3235 if (copym->m_len < sizeof(*ip6)) {
3236 m_freem(copym);
3237 return;
3238 }
3239#endif
3240
3241 ip6 = mtod(copym, struct ip6_hdr *);
3242 /*
3243 * clear embedded scope identifiers if necessary.
3244 * in6_clearscope will touch the addresses only when necessary.
3245 */
3246 in6_clearscope(&ip6->ip6_src);
3247 in6_clearscope(&ip6->ip6_dst);
3248
3249 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3250}
3251
3252/*
3253 * Chop IPv6 header off from the payload.
3254 */
3255static int
3256ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3257{
3258 struct mbuf *mh;
3259 struct ip6_hdr *ip6;
3260
3261 ip6 = mtod(m, struct ip6_hdr *);
3262 if (m->m_len > sizeof(*ip6)) {
3263 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3264 if (mh == 0) {
3265 m_freem(m);
3266 return ENOBUFS;
3267 }
3268 M_MOVE_PKTHDR(mh, m);
3269 MH_ALIGN(mh, sizeof(*ip6));
3270 m->m_len -= sizeof(*ip6);
3271 m->m_data += sizeof(*ip6);
3272 mh->m_next = m;
3273 m = mh;
3274 m->m_len = sizeof(*ip6);
3275 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3276 }
3277 exthdrs->ip6e_ip6 = m;
3278 return 0;
3279}
3280
3281/*
3282 * Compute IPv6 extension header length.
3283 */
3284int
3285ip6_optlen(struct in6pcb *in6p)
3286{
3287 int len;
3288
3289 if (!in6p->in6p_outputopts)
3290 return 0;
3291
3292 len = 0;
3293#define elen(x) \
3294 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3295
3296 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3297 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3298 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3299 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3300 return len;
3301#undef elen
3302}
3303
3304/*
3305 * Ensure sending address is valid.
3306 * Returns 0 on success, -1 if an error should be sent back or 1
3307 * if the packet could be dropped without error (protocol dependent).
3308 */
3309static int
3310ip6_ifaddrvalid(const struct in6_addr *addr)
3311{
3312 struct sockaddr_in6 sin6;
3313 int s, error;
3314 struct ifaddr *ifa;
3315 struct in6_ifaddr *ia6;
3316
3317 if (IN6_IS_ADDR_UNSPECIFIED(addr))
3318 return 0;
3319
3320 memset(&sin6, 0, sizeof(sin6));
3321 sin6.sin6_family = AF_INET6;
3322 sin6.sin6_len = sizeof(sin6);
3323 sin6.sin6_addr = *addr;
3324
3325 s = pserialize_read_enter();
3326 ifa = ifa_ifwithaddr(sin6tosa(&sin6));
3327 if ((ia6 = ifatoia6(ifa)) == NULL ||
3328 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
3329 error = -1;
3330 else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED))
3331 error = 1;
3332 else
3333 error = 0;
3334 pserialize_read_exit(s);
3335
3336 return error;
3337}
3338