1/* $NetBSD: ieee80211_output.c,v 1.57 2016/07/07 06:55:43 msaitoh Exp $ */
2/*-
3 * Copyright (c) 2001 Atsushi Onoe
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * Alternatively, this software may be distributed under the terms of the
19 * GNU General Public License ("GPL") version 2 as published by the Free
20 * Software Foundation.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35#ifdef __FreeBSD__
36__FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
37#endif
38#ifdef __NetBSD__
39__KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.57 2016/07/07 06:55:43 msaitoh Exp $");
40#endif
41
42#ifdef _KERNEL_OPT
43#include "opt_inet.h"
44#endif
45
46#ifdef __NetBSD__
47#endif /* __NetBSD__ */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/mbuf.h>
52#include <sys/kernel.h>
53#include <sys/endian.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/if_llc.h>
60#include <net/if_media.h>
61#include <net/if_arp.h>
62#include <net/if_ether.h>
63#include <net/if_llc.h>
64#include <net/if_vlanvar.h>
65
66#include <net80211/ieee80211_netbsd.h>
67#include <net80211/ieee80211_var.h>
68
69#include <net/bpf.h>
70
71#ifdef INET
72#include <netinet/in.h>
73#include <netinet/in_systm.h>
74#include <netinet/in_var.h>
75#include <netinet/ip.h>
76#include <net/if_ether.h>
77#endif
78
79static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
80 u_int hdrsize, u_int ciphdrsize, u_int mtu);
81
82#ifdef IEEE80211_DEBUG
83/*
84 * Decide if an outbound management frame should be
85 * printed when debugging is enabled. This filters some
86 * of the less interesting frames that come frequently
87 * (e.g. beacons).
88 */
89static __inline int
90doprint(struct ieee80211com *ic, int subtype)
91{
92 switch (subtype) {
93 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
94 return (ic->ic_opmode == IEEE80211_M_IBSS);
95 }
96 return 1;
97}
98#endif
99
100/*
101 * Set the direction field and address fields of an outgoing
102 * non-QoS frame. Note this should be called early on in
103 * constructing a frame as it sets i_fc[1]; other bits can
104 * then be or'd in.
105 */
106static void
107ieee80211_send_setup(struct ieee80211com *ic,
108 struct ieee80211_node *ni,
109 struct ieee80211_frame *wh,
110 int type,
111 const u_int8_t sa[IEEE80211_ADDR_LEN],
112 const u_int8_t da[IEEE80211_ADDR_LEN],
113 const u_int8_t bssid[IEEE80211_ADDR_LEN])
114{
115#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
116
117 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
118 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
119 switch (ic->ic_opmode) {
120 case IEEE80211_M_STA:
121 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
122 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
123 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
124 IEEE80211_ADDR_COPY(wh->i_addr3, da);
125 break;
126 case IEEE80211_M_IBSS:
127 case IEEE80211_M_AHDEMO:
128 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
129 IEEE80211_ADDR_COPY(wh->i_addr1, da);
130 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
131 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
132 break;
133 case IEEE80211_M_HOSTAP:
134 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
135 IEEE80211_ADDR_COPY(wh->i_addr1, da);
136 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
137 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
138 break;
139 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
140 break;
141 }
142 } else {
143 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
144 IEEE80211_ADDR_COPY(wh->i_addr1, da);
145 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
146 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
147 }
148 *(u_int16_t *)&wh->i_dur[0] = 0;
149 /* NB: use non-QoS tid */
150 *(u_int16_t *)&wh->i_seq[0] =
151 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
152 ni->ni_txseqs[0]++;
153#undef WH4
154}
155
156/*
157 * Send a management frame to the specified node. The node pointer
158 * must have a reference as the pointer will be passed to the driver
159 * and potentially held for a long time. If the frame is successfully
160 * dispatched to the driver, then it is responsible for freeing the
161 * reference (and potentially free'ing up any associated storage).
162 */
163static int
164ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
165 struct mbuf *m, int type, int timer)
166{
167 struct ifnet *ifp = ic->ic_ifp;
168 struct ieee80211_frame *wh;
169
170 IASSERT(ni != NULL, ("null node"));
171
172 /*
173 * Yech, hack alert! We want to pass the node down to the
174 * driver's start routine. If we don't do so then the start
175 * routine must immediately look it up again and that can
176 * cause a lock order reversal if, for example, this frame
177 * is being sent because the station is being timedout and
178 * the frame being sent is a DEAUTH message. We could stick
179 * this in an m_tag and tack that on to the mbuf. However
180 * that's rather expensive to do for every frame so instead
181 * we stuff it in the rcvif field since outbound frames do
182 * not (presently) use this.
183 */
184 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
185 if (m == NULL)
186 return ENOMEM;
187 M_SETCTX(m, ni);
188
189 wh = mtod(m, struct ieee80211_frame *);
190 ieee80211_send_setup(ic, ni, wh,
191 IEEE80211_FC0_TYPE_MGT | type,
192 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
193 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
194 m->m_flags &= ~M_LINK0;
195 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
196 "[%s] encrypting frame (%s)\n",
197 ether_sprintf(wh->i_addr1), __func__);
198 wh->i_fc[1] |= IEEE80211_FC1_WEP;
199 }
200#ifdef IEEE80211_DEBUG
201 /* avoid printing too many frames */
202 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
203 ieee80211_msg_dumppkts(ic)) {
204 printf("[%s] send %s on channel %u\n",
205 ether_sprintf(wh->i_addr1),
206 ieee80211_mgt_subtype_name[
207 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
208 IEEE80211_FC0_SUBTYPE_SHIFT],
209 ieee80211_chan2ieee(ic, ic->ic_curchan));
210 }
211#endif
212 IEEE80211_NODE_STAT(ni, tx_mgmt);
213 IF_ENQUEUE(&ic->ic_mgtq, m);
214 if (timer) {
215 /*
216 * Set the mgt frame timeout.
217 */
218 ic->ic_mgt_timer = timer;
219 ifp->if_timer = 1;
220 }
221 if_start_lock(ifp);
222 return 0;
223}
224
225/*
226 * Send a null data frame to the specified node.
227 *
228 * NB: the caller is assumed to have setup a node reference
229 * for use; this is necessary to deal with a race condition
230 * when probing for inactive stations.
231 */
232int
233ieee80211_send_nulldata(struct ieee80211_node *ni)
234{
235 struct ieee80211com *ic = ni->ni_ic;
236 struct ifnet *ifp = ic->ic_ifp;
237 struct mbuf *m;
238 struct ieee80211_frame *wh;
239
240 MGETHDR(m, M_NOWAIT, MT_HEADER);
241 if (m == NULL) {
242 /* XXX debug msg */
243 ic->ic_stats.is_tx_nobuf++;
244 ieee80211_unref_node(&ni);
245 return ENOMEM;
246 }
247 M_SETCTX(m, ni);
248
249 wh = mtod(m, struct ieee80211_frame *);
250 ieee80211_send_setup(ic, ni, wh,
251 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
252 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
253 /* NB: power management bit is never sent by an AP */
254 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
255 ic->ic_opmode != IEEE80211_M_HOSTAP)
256 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
257 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
258
259 IEEE80211_NODE_STAT(ni, tx_data);
260
261 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
262 "[%s] send null data frame on channel %u, pwr mgt %s\n",
263 ether_sprintf(ni->ni_macaddr),
264 ieee80211_chan2ieee(ic, ic->ic_curchan),
265 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
266
267 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */
268 if_start_lock(ifp);
269
270 return 0;
271}
272
273/*
274 * Assign priority to a frame based on any vlan tag assigned
275 * to the station and/or any Diffserv setting in an IP header.
276 * Finally, if an ACM policy is setup (in station mode) it's
277 * applied.
278 */
279int
280ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
281{
282 int v_wme_ac, d_wme_ac, ac;
283#ifdef INET
284 struct ether_header *eh;
285#endif
286
287 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
288 ac = WME_AC_BE;
289 goto done;
290 }
291
292 /*
293 * If node has a vlan tag then all traffic
294 * to it must have a matching tag.
295 */
296 v_wme_ac = 0;
297 if (ni->ni_vlan != 0) {
298 /* XXX used to check ec_nvlans. */
299 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
300 if (mtag == NULL) {
301 IEEE80211_NODE_STAT(ni, tx_novlantag);
302 return 1;
303 }
304 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
305 EVL_VLANOFTAG(ni->ni_vlan)) {
306 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
307 return 1;
308 }
309 /* map vlan priority to AC */
310 switch (EVL_PRIOFTAG(ni->ni_vlan)) {
311 case 1:
312 case 2:
313 v_wme_ac = WME_AC_BK;
314 break;
315 case 0:
316 case 3:
317 v_wme_ac = WME_AC_BE;
318 break;
319 case 4:
320 case 5:
321 v_wme_ac = WME_AC_VI;
322 break;
323 case 6:
324 case 7:
325 v_wme_ac = WME_AC_VO;
326 break;
327 }
328 }
329
330#ifdef INET
331 eh = mtod(m, struct ether_header *);
332 if (eh->ether_type == htons(ETHERTYPE_IP)) {
333 const struct ip *ip = (struct ip *)
334 (mtod(m, u_int8_t *) + sizeof (*eh));
335 /*
336 * IP frame, map the TOS field.
337 */
338 switch (ip->ip_tos) {
339 case 0x08:
340 case 0x20:
341 d_wme_ac = WME_AC_BK; /* background */
342 break;
343 case 0x28:
344 case 0xa0:
345 d_wme_ac = WME_AC_VI; /* video */
346 break;
347 case 0x30: /* voice */
348 case 0xe0:
349 case 0x88: /* XXX UPSD */
350 case 0xb8:
351 d_wme_ac = WME_AC_VO;
352 break;
353 default:
354 d_wme_ac = WME_AC_BE;
355 break;
356 }
357 } else {
358#endif /* INET */
359 d_wme_ac = WME_AC_BE;
360#ifdef INET
361 }
362#endif
363 /*
364 * Use highest priority AC.
365 */
366 if (v_wme_ac > d_wme_ac)
367 ac = v_wme_ac;
368 else
369 ac = d_wme_ac;
370
371 /*
372 * Apply ACM policy.
373 */
374 if (ic->ic_opmode == IEEE80211_M_STA) {
375 static const int acmap[4] = {
376 WME_AC_BK, /* WME_AC_BE */
377 WME_AC_BK, /* WME_AC_BK */
378 WME_AC_BE, /* WME_AC_VI */
379 WME_AC_VI, /* WME_AC_VO */
380 };
381 while (ac != WME_AC_BK &&
382 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
383 ac = acmap[ac];
384 }
385done:
386 M_WME_SETAC(m, ac);
387 return 0;
388}
389
390/*
391 * Insure there is sufficient contiguous space to encapsulate the
392 * 802.11 data frame. If room isn't already there, arrange for it.
393 * Drivers and cipher modules assume we have done the necessary work
394 * and fail rudely if they don't find the space they need.
395 */
396static struct mbuf *
397ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
398 struct ieee80211_key *key, struct mbuf *m)
399{
400#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
401 int needed_space = hdrsize;
402 int wlen = 0;
403
404 if (key != NULL) {
405 /* XXX belongs in crypto code? */
406 needed_space += key->wk_cipher->ic_header;
407 /* XXX frags */
408 }
409 /*
410 * We know we are called just before stripping an Ethernet
411 * header and prepending an LLC header. This means we know
412 * there will be
413 * sizeof(struct ether_header) - sizeof(struct llc)
414 * bytes recovered to which we need additional space for the
415 * 802.11 header and any crypto header.
416 */
417 /* XXX check trailing space and copy instead? */
418 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
419 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
420 if (n == NULL) {
421 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
422 "%s: cannot expand storage\n", __func__);
423 ic->ic_stats.is_tx_nobuf++;
424 m_freem(m);
425 return NULL;
426 }
427 IASSERT(needed_space <= MHLEN,
428 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
429 /*
430 * Setup new mbuf to have leading space to prepend the
431 * 802.11 header and any crypto header bits that are
432 * required (the latter are added when the driver calls
433 * back to ieee80211_crypto_encap to do crypto encapsulation).
434 */
435 /* NB: must be first 'cuz it clobbers m_data */
436 M_MOVE_PKTHDR(n, m);
437 n->m_len = 0; /* NB: m_gethdr does not set */
438 n->m_data += needed_space;
439 /*
440 * Pull up Ethernet header to create the expected layout.
441 * We could use m_pullup but that's overkill (i.e. we don't
442 * need the actual data) and it cannot fail so do it inline
443 * for speed.
444 */
445 /* NB: struct ether_header is known to be contiguous */
446 n->m_len += sizeof(struct ether_header);
447 m->m_len -= sizeof(struct ether_header);
448 m->m_data += sizeof(struct ether_header);
449 /*
450 * Replace the head of the chain.
451 */
452 n->m_next = m;
453 m = n;
454 } else {
455 /* We will overwrite the ethernet header in the
456 * 802.11 encapsulation stage. Make sure that it
457 * is writable.
458 */
459 wlen = sizeof(struct ether_header);
460 }
461
462 /*
463 * If we're going to s/w encrypt the mbuf chain make sure it is
464 * writable.
465 */
466 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
467 wlen = M_COPYALL;
468
469 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
470 m_freem(m);
471 return NULL;
472 }
473 return m;
474#undef TO_BE_RECLAIMED
475}
476
477/*
478 * Return the transmit key to use in sending a unicast frame.
479 * If a unicast key is set we use that. When no unicast key is set
480 * we fall back to the default transmit key.
481 */
482static __inline struct ieee80211_key *
483ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
484{
485 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
486 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
487 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
488 return NULL;
489 return &ic->ic_nw_keys[ic->ic_def_txkey];
490 } else {
491 return &ni->ni_ucastkey;
492 }
493}
494
495/*
496 * Return the transmit key to use in sending a multicast frame.
497 * Multicast traffic always uses the group key which is installed as
498 * the default tx key.
499 */
500static __inline struct ieee80211_key *
501ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
502 struct ieee80211_node *ni)
503{
504 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
505 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
506 return NULL;
507 return &ic->ic_nw_keys[ic->ic_def_txkey];
508}
509
510/*
511 * Encapsulate an outbound data frame. The mbuf chain is updated.
512 * If an error is encountered NULL is returned. The caller is required
513 * to provide a node reference and pullup the ethernet header in the
514 * first mbuf.
515 */
516struct mbuf *
517ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
518 struct ieee80211_node *ni)
519{
520 struct ether_header eh;
521 struct ieee80211_frame *wh;
522 struct ieee80211_key *key;
523 struct llc *llc;
524 int hdrsize, datalen, addqos, txfrag;
525
526 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
527 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
528
529 /*
530 * Insure space for additional headers. First identify
531 * transmit key to use in calculating any buffer adjustments
532 * required. This is also used below to do privacy
533 * encapsulation work. Then calculate the 802.11 header
534 * size and any padding required by the driver.
535 *
536 * Note key may be NULL if we fall back to the default
537 * transmit key and that is not set. In that case the
538 * buffer may not be expanded as needed by the cipher
539 * routines, but they will/should discard it.
540 */
541 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
542 if (ic->ic_opmode == IEEE80211_M_STA ||
543 !IEEE80211_IS_MULTICAST(eh.ether_dhost))
544 key = ieee80211_crypto_getucastkey(ic, ni);
545 else
546 key = ieee80211_crypto_getmcastkey(ic, ni);
547 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
548 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
549 "[%s] no default transmit key (%s) deftxkey %u\n",
550 ether_sprintf(eh.ether_dhost), __func__,
551 ic->ic_def_txkey);
552 ic->ic_stats.is_tx_nodefkey++;
553 }
554 } else
555 key = NULL;
556 /* XXX 4-address format */
557 /*
558 * XXX Some ap's don't handle QoS-encapsulated EAPOL
559 * frames so suppress use. This may be an issue if other
560 * ap's require all data frames to be QoS-encapsulated
561 * once negotiated in which case we'll need to make this
562 * configurable.
563 */
564 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
565 eh.ether_type != htons(ETHERTYPE_PAE);
566 if (addqos)
567 hdrsize = sizeof(struct ieee80211_qosframe);
568 else
569 hdrsize = sizeof(struct ieee80211_frame);
570 if (ic->ic_flags & IEEE80211_F_DATAPAD)
571 hdrsize = roundup(hdrsize, sizeof(u_int32_t));
572 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
573 if (m == NULL) {
574 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
575 goto bad;
576 }
577
578 /* NB: this could be optimized because of ieee80211_mbuf_adjust */
579 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
580 llc = mtod(m, struct llc *);
581 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
582 llc->llc_control = LLC_UI;
583 llc->llc_snap.org_code[0] = 0;
584 llc->llc_snap.org_code[1] = 0;
585 llc->llc_snap.org_code[2] = 0;
586 llc->llc_snap.ether_type = eh.ether_type;
587 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
588
589 M_PREPEND(m, hdrsize, M_DONTWAIT);
590 if (m == NULL) {
591 ic->ic_stats.is_tx_nobuf++;
592 goto bad;
593 }
594 wh = mtod(m, struct ieee80211_frame *);
595 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
596 *(u_int16_t *)wh->i_dur = 0;
597 switch (ic->ic_opmode) {
598 case IEEE80211_M_STA:
599 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
600 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
601 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
602 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
603 break;
604 case IEEE80211_M_IBSS:
605 case IEEE80211_M_AHDEMO:
606 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
607 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
608 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
609 /*
610 * NB: always use the bssid from ic_bss as the
611 * neighbor's may be stale after an ibss merge
612 */
613 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
614 break;
615 case IEEE80211_M_HOSTAP:
616#ifndef IEEE80211_NO_HOSTAP
617 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
618 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
619 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
620 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
621#endif /* !IEEE80211_NO_HOSTAP */
622 break;
623 case IEEE80211_M_MONITOR:
624 goto bad;
625 }
626 if (m->m_flags & M_MORE_DATA)
627 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
628 if (addqos) {
629 struct ieee80211_qosframe *qwh =
630 (struct ieee80211_qosframe *) wh;
631 int ac, tid;
632
633 ac = M_WME_GETAC(m);
634 /* map from access class/queue to 11e header priorty value */
635 tid = WME_AC_TO_TID(ac);
636 qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
637 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
638 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
639 qwh->i_qos[1] = 0;
640 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
641
642 *(u_int16_t *)wh->i_seq =
643 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
644 ni->ni_txseqs[tid]++;
645 } else {
646 *(u_int16_t *)wh->i_seq =
647 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
648 ni->ni_txseqs[0]++;
649 }
650 /* check if xmit fragmentation is required */
651 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
652 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
653 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */
654 if (key != NULL) {
655 /*
656 * IEEE 802.1X: send EAPOL frames always in the clear.
657 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
658 */
659 if (eh.ether_type != htons(ETHERTYPE_PAE) ||
660 ((ic->ic_flags & IEEE80211_F_WPA) &&
661 (ic->ic_opmode == IEEE80211_M_STA ?
662 !IEEE80211_KEY_UNDEFINED(*key) :
663 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
664 wh->i_fc[1] |= IEEE80211_FC1_WEP;
665 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
666 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
667 "[%s] enmic failed, discard frame\n",
668 ether_sprintf(eh.ether_dhost));
669 ic->ic_stats.is_crypto_enmicfail++;
670 goto bad;
671 }
672 }
673 }
674 if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
675 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
676 goto bad;
677
678 IEEE80211_NODE_STAT(ni, tx_data);
679 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
680
681 return m;
682bad:
683 if (m != NULL)
684 m_freem(m);
685 return NULL;
686}
687
688/*
689 * Arguments in:
690 *
691 * paylen: payload length (no FCS, no WEP header)
692 *
693 * hdrlen: header length
694 *
695 * rate: MSDU speed, units 500kb/s
696 *
697 * flags: IEEE80211_F_SHPREAMBLE (use short preamble),
698 * IEEE80211_F_SHSLOT (use short slot length)
699 *
700 * Arguments out:
701 *
702 * d: 802.11 Duration field for RTS,
703 * 802.11 Duration field for data frame,
704 * PLCP Length for data frame,
705 * residual octets at end of data slot
706 */
707static int
708ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
709 struct ieee80211_duration *d)
710{
711 int pre, ctsrate;
712 int ack, bitlen, data_dur, remainder;
713
714 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
715 * DATA reserves medium for SIFS | ACK,
716 *
717 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
718 *
719 * XXXMYC: no ACK on multicast/broadcast or control packets
720 */
721
722 bitlen = len * 8;
723
724 pre = IEEE80211_DUR_DS_SIFS;
725 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
726 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
727 else
728 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
729
730 d->d_residue = 0;
731 data_dur = (bitlen * 2) / rate;
732 remainder = (bitlen * 2) % rate;
733 if (remainder != 0) {
734 d->d_residue = (rate - remainder) / 16;
735 data_dur++;
736 }
737
738 switch (rate) {
739 case 2: /* 1 Mb/s */
740 case 4: /* 2 Mb/s */
741 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
742 ctsrate = 2;
743 break;
744 case 11: /* 5.5 Mb/s */
745 case 22: /* 11 Mb/s */
746 case 44: /* 22 Mb/s */
747 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
748 ctsrate = 4;
749 break;
750 default:
751 /* TBD */
752 return -1;
753 }
754
755 d->d_plcp_len = data_dur;
756
757 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
758
759 d->d_rts_dur =
760 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
761 pre + data_dur +
762 ack;
763
764 d->d_data_dur = ack;
765
766 return 0;
767}
768
769/*
770 * Arguments in:
771 *
772 * wh: 802.11 header
773 *
774 * paylen: payload length (no FCS, no WEP header)
775 *
776 * rate: MSDU speed, units 500kb/s
777 *
778 * fraglen: fragment length, set to maximum (or higher) for no
779 * fragmentation
780 *
781 * flags: IEEE80211_F_PRIVACY (hardware adds WEP),
782 * IEEE80211_F_SHPREAMBLE (use short preamble),
783 * IEEE80211_F_SHSLOT (use short slot length)
784 *
785 * Arguments out:
786 *
787 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
788 * of first/only fragment
789 *
790 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
791 * of last fragment
792 *
793 * ieee80211_compute_duration assumes crypto-encapsulation, if any,
794 * has already taken place.
795 */
796int
797ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
798 const struct ieee80211_key *wk, int len,
799 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
800 struct ieee80211_duration *dn, int *npktp, int debug)
801{
802 int ack, rc;
803 int cryptolen, /* crypto overhead: header+trailer */
804 firstlen, /* first fragment's payload + overhead length */
805 hdrlen, /* header length w/o driver padding */
806 lastlen, /* last fragment's payload length w/ overhead */
807 lastlen0, /* last fragment's payload length w/o overhead */
808 npkt, /* number of fragments */
809 overlen, /* non-802.11 header overhead per fragment */
810 paylen; /* payload length w/o overhead */
811
812 hdrlen = ieee80211_anyhdrsize((const void *)wh);
813
814 /* Account for padding required by the driver. */
815 if (icflags & IEEE80211_F_DATAPAD)
816 paylen = len - roundup(hdrlen, sizeof(u_int32_t));
817 else
818 paylen = len - hdrlen;
819
820 overlen = IEEE80211_CRC_LEN;
821
822 if (wk != NULL) {
823 cryptolen = wk->wk_cipher->ic_header +
824 wk->wk_cipher->ic_trailer;
825 paylen -= cryptolen;
826 overlen += cryptolen;
827 }
828
829 npkt = paylen / fraglen;
830 lastlen0 = paylen % fraglen;
831
832 if (npkt == 0) /* no fragments */
833 lastlen = paylen + overlen;
834 else if (lastlen0 != 0) { /* a short "tail" fragment */
835 lastlen = lastlen0 + overlen;
836 npkt++;
837 } else /* full-length "tail" fragment */
838 lastlen = fraglen + overlen;
839
840 if (npktp != NULL)
841 *npktp = npkt;
842
843 if (npkt > 1)
844 firstlen = fraglen + overlen;
845 else
846 firstlen = paylen + overlen;
847
848 if (debug) {
849 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
850 "fraglen %d overlen %d len %d rate %d icflags %08x\n",
851 __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
852 overlen, len, rate, icflags);
853 }
854
855 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
856 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
857
858 rc = ieee80211_compute_duration1(firstlen + hdrlen,
859 ack, icflags, rate, d0);
860 if (rc == -1)
861 return rc;
862
863 if (npkt <= 1) {
864 *dn = *d0;
865 return 0;
866 }
867 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
868 dn);
869}
870
871/*
872 * Fragment the frame according to the specified mtu.
873 * The size of the 802.11 header (w/o padding) is provided
874 * so we don't need to recalculate it. We create a new
875 * mbuf for each fragment and chain it through m_nextpkt;
876 * we might be able to optimize this by reusing the original
877 * packet's mbufs but that is significantly more complicated.
878 */
879static int
880ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
881 u_int hdrsize, u_int ciphdrsize, u_int mtu)
882{
883 struct ieee80211_frame *wh, *whf;
884 struct mbuf *m, *prev, *next;
885 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
886
887 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
888 IASSERT(m0->m_pkthdr.len > mtu,
889 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
890
891 wh = mtod(m0, struct ieee80211_frame *);
892 /* NB: mark the first frag; it will be propagated below */
893 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
894 totalhdrsize = hdrsize + ciphdrsize;
895 fragno = 1;
896 off = mtu - ciphdrsize;
897 remainder = m0->m_pkthdr.len - off;
898 prev = m0;
899 do {
900 fragsize = totalhdrsize + remainder;
901 if (fragsize > mtu)
902 fragsize = mtu;
903 IASSERT(fragsize < MCLBYTES,
904 ("fragment size %u too big!", fragsize));
905 if (fragsize > MHLEN)
906 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
907 else
908 m = m_gethdr(M_DONTWAIT, MT_DATA);
909 if (m == NULL)
910 goto bad;
911 /* leave room to prepend any cipher header */
912 m_align(m, fragsize - ciphdrsize);
913
914 /*
915 * Form the header in the fragment. Note that since
916 * we mark the first fragment with the MORE_FRAG bit
917 * it automatically is propagated to each fragment; we
918 * need only clear it on the last fragment (done below).
919 */
920 whf = mtod(m, struct ieee80211_frame *);
921 memcpy(whf, wh, hdrsize);
922 *(u_int16_t *)&whf->i_seq[0] |= htole16(
923 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
924 IEEE80211_SEQ_FRAG_SHIFT);
925 fragno++;
926
927 payload = fragsize - totalhdrsize;
928 /* NB: destination is known to be contiguous */
929 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
930 m->m_len = hdrsize + payload;
931 m->m_pkthdr.len = hdrsize + payload;
932 m->m_flags |= M_FRAG;
933
934 /* chain up the fragment */
935 prev->m_nextpkt = m;
936 prev = m;
937
938 /* deduct fragment just formed */
939 remainder -= payload;
940 off += payload;
941 } while (remainder != 0);
942 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
943
944 /* strip first mbuf now that everything has been copied */
945 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
946 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
947
948 ic->ic_stats.is_tx_fragframes++;
949 ic->ic_stats.is_tx_frags += fragno-1;
950
951 return 1;
952bad:
953 /* reclaim fragments but leave original frame for caller to free */
954 for (m = m0->m_nextpkt; m != NULL; m = next) {
955 next = m->m_nextpkt;
956 m->m_nextpkt = NULL; /* XXX paranoid */
957 m_freem(m);
958 }
959 m0->m_nextpkt = NULL;
960 return 0;
961}
962
963/*
964 * Add a supported rates element id to a frame.
965 */
966static u_int8_t *
967ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
968{
969 int nrates;
970
971 *frm++ = IEEE80211_ELEMID_RATES;
972 nrates = rs->rs_nrates;
973 if (nrates > IEEE80211_RATE_SIZE)
974 nrates = IEEE80211_RATE_SIZE;
975 *frm++ = nrates;
976 memcpy(frm, rs->rs_rates, nrates);
977 return frm + nrates;
978}
979
980/*
981 * Add an extended supported rates element id to a frame.
982 */
983static u_int8_t *
984ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
985{
986 /*
987 * Add an extended supported rates element if operating in 11g mode.
988 */
989 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
990 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
991 *frm++ = IEEE80211_ELEMID_XRATES;
992 *frm++ = nrates;
993 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
994 frm += nrates;
995 }
996 return frm;
997}
998
999/*
1000 * Add an ssid elemet to a frame.
1001 */
1002static u_int8_t *
1003ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
1004{
1005 *frm++ = IEEE80211_ELEMID_SSID;
1006 *frm++ = len;
1007 memcpy(frm, ssid, len);
1008 return frm + len;
1009}
1010
1011/*
1012 * Add an erp element to a frame.
1013 */
1014static u_int8_t *
1015ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
1016{
1017 u_int8_t erp;
1018
1019 *frm++ = IEEE80211_ELEMID_ERP;
1020 *frm++ = 1;
1021 erp = 0;
1022 if (ic->ic_nonerpsta != 0)
1023 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1024 if (ic->ic_flags & IEEE80211_F_USEPROT)
1025 erp |= IEEE80211_ERP_USE_PROTECTION;
1026 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1027 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1028 *frm++ = erp;
1029 return frm;
1030}
1031
1032static u_int8_t *
1033ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
1034{
1035#define WPA_OUI_BYTES 0x00, 0x50, 0xf2
1036#define ADDSHORT(frm, v) do { \
1037 frm[0] = (v) & 0xff; \
1038 frm[1] = (v) >> 8; \
1039 frm += 2; \
1040} while (0)
1041#define ADDSELECTOR(frm, sel) do { \
1042 memcpy(frm, sel, 4); \
1043 frm += 4; \
1044} while (0)
1045 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
1046 static const u_int8_t cipher_suite[][4] = {
1047 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */
1048 { WPA_OUI_BYTES, WPA_CSE_TKIP },
1049 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */
1050 { WPA_OUI_BYTES, WPA_CSE_CCMP },
1051 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1052 { WPA_OUI_BYTES, WPA_CSE_NULL },
1053 };
1054 static const u_int8_t wep104_suite[4] =
1055 { WPA_OUI_BYTES, WPA_CSE_WEP104 };
1056 static const u_int8_t key_mgt_unspec[4] =
1057 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
1058 static const u_int8_t key_mgt_psk[4] =
1059 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
1060 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1061 u_int8_t *frm = ie;
1062 u_int8_t *selcnt;
1063
1064 *frm++ = IEEE80211_ELEMID_VENDOR;
1065 *frm++ = 0; /* length filled in below */
1066 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */
1067 frm += sizeof(oui);
1068 ADDSHORT(frm, WPA_VERSION);
1069
1070 /* XXX filter out CKIP */
1071
1072 /* multicast cipher */
1073 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1074 rsn->rsn_mcastkeylen >= 13)
1075 ADDSELECTOR(frm, wep104_suite);
1076 else
1077 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1078
1079 /* unicast cipher list */
1080 selcnt = frm;
1081 ADDSHORT(frm, 0); /* selector count */
1082 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1083 selcnt[0]++;
1084 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1085 }
1086 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1087 selcnt[0]++;
1088 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1089 }
1090
1091 /* authenticator selector list */
1092 selcnt = frm;
1093 ADDSHORT(frm, 0); /* selector count */
1094 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1095 selcnt[0]++;
1096 ADDSELECTOR(frm, key_mgt_unspec);
1097 }
1098 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1099 selcnt[0]++;
1100 ADDSELECTOR(frm, key_mgt_psk);
1101 }
1102
1103 /* optional capabilities */
1104 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
1105 ADDSHORT(frm, rsn->rsn_caps);
1106
1107 /* calculate element length */
1108 ie[1] = frm - ie - 2;
1109 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1110 ("WPA IE too big, %u > %zu",
1111 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1112 return frm;
1113#undef ADDSHORT
1114#undef ADDSELECTOR
1115#undef WPA_OUI_BYTES
1116}
1117
1118static u_int8_t *
1119ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
1120{
1121#define RSN_OUI_BYTES 0x00, 0x0f, 0xac
1122#define ADDSHORT(frm, v) do { \
1123 frm[0] = (v) & 0xff; \
1124 frm[1] = (v) >> 8; \
1125 frm += 2; \
1126} while (0)
1127#define ADDSELECTOR(frm, sel) do { \
1128 memcpy(frm, sel, 4); \
1129 frm += 4; \
1130} while (0)
1131 static const u_int8_t cipher_suite[][4] = {
1132 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */
1133 { RSN_OUI_BYTES, RSN_CSE_TKIP },
1134 { RSN_OUI_BYTES, RSN_CSE_WRAP },
1135 { RSN_OUI_BYTES, RSN_CSE_CCMP },
1136 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1137 { RSN_OUI_BYTES, RSN_CSE_NULL },
1138 };
1139 static const u_int8_t wep104_suite[4] =
1140 { RSN_OUI_BYTES, RSN_CSE_WEP104 };
1141 static const u_int8_t key_mgt_unspec[4] =
1142 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
1143 static const u_int8_t key_mgt_psk[4] =
1144 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
1145 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1146 u_int8_t *frm = ie;
1147 u_int8_t *selcnt;
1148
1149 *frm++ = IEEE80211_ELEMID_RSN;
1150 *frm++ = 0; /* length filled in below */
1151 ADDSHORT(frm, RSN_VERSION);
1152
1153 /* XXX filter out CKIP */
1154
1155 /* multicast cipher */
1156 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1157 rsn->rsn_mcastkeylen >= 13)
1158 ADDSELECTOR(frm, wep104_suite);
1159 else
1160 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1161
1162 /* unicast cipher list */
1163 selcnt = frm;
1164 ADDSHORT(frm, 0); /* selector count */
1165 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1166 selcnt[0]++;
1167 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1168 }
1169 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1170 selcnt[0]++;
1171 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1172 }
1173
1174 /* authenticator selector list */
1175 selcnt = frm;
1176 ADDSHORT(frm, 0); /* selector count */
1177 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1178 selcnt[0]++;
1179 ADDSELECTOR(frm, key_mgt_unspec);
1180 }
1181 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1182 selcnt[0]++;
1183 ADDSELECTOR(frm, key_mgt_psk);
1184 }
1185
1186 /* optional capabilities */
1187 ADDSHORT(frm, rsn->rsn_caps);
1188 /* XXX PMKID */
1189
1190 /* calculate element length */
1191 ie[1] = frm - ie - 2;
1192 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1193 ("RSN IE too big, %u > %zu",
1194 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1195 return frm;
1196#undef ADDSELECTOR
1197#undef ADDSHORT
1198#undef RSN_OUI_BYTES
1199}
1200
1201/*
1202 * Add a WPA/RSN element to a frame.
1203 */
1204static u_int8_t *
1205ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
1206{
1207
1208 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
1209 if (ic->ic_flags & IEEE80211_F_WPA2)
1210 frm = ieee80211_setup_rsn_ie(ic, frm);
1211 if (ic->ic_flags & IEEE80211_F_WPA1)
1212 frm = ieee80211_setup_wpa_ie(ic, frm);
1213 return frm;
1214}
1215
1216#define WME_OUI_BYTES 0x00, 0x50, 0xf2
1217/*
1218 * Add a WME information element to a frame.
1219 */
1220static u_int8_t *
1221ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
1222{
1223 static const struct ieee80211_wme_info info = {
1224 .wme_id = IEEE80211_ELEMID_VENDOR,
1225 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1226 .wme_oui = { WME_OUI_BYTES },
1227 .wme_type = WME_OUI_TYPE,
1228 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1229 .wme_version = WME_VERSION,
1230 .wme_info = 0,
1231 };
1232 memcpy(frm, &info, sizeof(info));
1233 return frm + sizeof(info);
1234}
1235
1236/*
1237 * Add a WME parameters element to a frame.
1238 */
1239static u_int8_t *
1240ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
1241{
1242#define SM(_v, _f) (((_v) << _f##_S) & _f)
1243#define ADDSHORT(frm, v) do { \
1244 frm[0] = (v) & 0xff; \
1245 frm[1] = (v) >> 8; \
1246 frm += 2; \
1247} while (0)
1248 /* NB: this works 'cuz a param has an info at the front */
1249 static const struct ieee80211_wme_info param = {
1250 .wme_id = IEEE80211_ELEMID_VENDOR,
1251 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1252 .wme_oui = { WME_OUI_BYTES },
1253 .wme_type = WME_OUI_TYPE,
1254 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1255 .wme_version = WME_VERSION,
1256 };
1257 int i;
1258
1259 memcpy(frm, &param, sizeof(param));
1260 frm += offsetof(struct ieee80211_wme_info, wme_info);
1261 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1262 *frm++ = 0; /* reserved field */
1263 for (i = 0; i < WME_NUM_AC; i++) {
1264 const struct wmeParams *ac =
1265 &wme->wme_bssChanParams.cap_wmeParams[i];
1266 *frm++ = SM(i, WME_PARAM_ACI)
1267 | SM(ac->wmep_acm, WME_PARAM_ACM)
1268 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1269 ;
1270 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1271 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1272 ;
1273 ADDSHORT(frm, ac->wmep_txopLimit);
1274 }
1275 return frm;
1276#undef SM
1277#undef ADDSHORT
1278}
1279#undef WME_OUI_BYTES
1280
1281/*
1282 * Send a probe request frame with the specified ssid
1283 * and any optional information element data.
1284 */
1285int
1286ieee80211_send_probereq(struct ieee80211_node *ni,
1287 const u_int8_t sa[IEEE80211_ADDR_LEN],
1288 const u_int8_t da[IEEE80211_ADDR_LEN],
1289 const u_int8_t bssid[IEEE80211_ADDR_LEN],
1290 const u_int8_t *ssid, size_t ssidlen,
1291 const void *optie, size_t optielen)
1292{
1293 struct ieee80211com *ic = ni->ni_ic;
1294 enum ieee80211_phymode mode;
1295 struct ieee80211_frame *wh;
1296 struct mbuf *m;
1297 u_int8_t *frm;
1298
1299 /*
1300 * Hold a reference on the node so it doesn't go away until after
1301 * the xmit is complete all the way in the driver. On error we
1302 * will remove our reference.
1303 */
1304 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1305 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1306 __func__, __LINE__,
1307 ni, ether_sprintf(ni->ni_macaddr),
1308 ieee80211_node_refcnt(ni)+1);
1309 ieee80211_ref_node(ni);
1310
1311 /*
1312 * prreq frame format
1313 * [tlv] ssid
1314 * [tlv] supported rates
1315 * [tlv] extended supported rates
1316 * [tlv] user-specified ie's
1317 */
1318 m = ieee80211_getmgtframe(&frm,
1319 2 + IEEE80211_NWID_LEN
1320 + 2 + IEEE80211_RATE_SIZE
1321 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1322 + (optie != NULL ? optielen : 0)
1323 );
1324 if (m == NULL) {
1325 ic->ic_stats.is_tx_nobuf++;
1326 ieee80211_free_node(ni);
1327 return ENOMEM;
1328 }
1329
1330 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1331 mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1332 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
1333 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
1334
1335 if (optie != NULL) {
1336 memcpy(frm, optie, optielen);
1337 frm += optielen;
1338 }
1339 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1340
1341 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1342 if (m == NULL)
1343 return ENOMEM;
1344 M_SETCTX(m, ni);
1345
1346 wh = mtod(m, struct ieee80211_frame *);
1347 ieee80211_send_setup(ic, ni, wh,
1348 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1349 sa, da, bssid);
1350 /* XXX power management? */
1351
1352 IEEE80211_NODE_STAT(ni, tx_probereq);
1353 IEEE80211_NODE_STAT(ni, tx_mgmt);
1354
1355 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1356 "[%s] send probe req on channel %u\n",
1357 ether_sprintf(wh->i_addr1),
1358 ieee80211_chan2ieee(ic, ic->ic_curchan));
1359
1360 IF_ENQUEUE(&ic->ic_mgtq, m);
1361 if_start_lock(ic->ic_ifp);
1362 return 0;
1363}
1364
1365/*
1366 * Send a management frame. The node is for the destination (or ic_bss
1367 * when in station mode). Nodes other than ic_bss have their reference
1368 * count bumped to reflect our use for an indeterminant time.
1369 */
1370int
1371ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1372 int type, int arg)
1373{
1374#define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1375 struct mbuf *m;
1376 u_int8_t *frm;
1377 u_int16_t capinfo;
1378 int has_challenge, is_shared_key, ret, timer, status;
1379
1380 IASSERT(ni != NULL, ("null node"));
1381
1382 /*
1383 * Hold a reference on the node so it doesn't go away until after
1384 * the xmit is complete all the way in the driver. On error we
1385 * will remove our reference.
1386 */
1387 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1388 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1389 __func__, __LINE__,
1390 ni, ether_sprintf(ni->ni_macaddr),
1391 ieee80211_node_refcnt(ni)+1);
1392 ieee80211_ref_node(ni);
1393
1394 timer = 0;
1395 switch (type) {
1396 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1397 /*
1398 * probe response frame format
1399 * [8] time stamp
1400 * [2] beacon interval
1401 * [2] cabability information
1402 * [tlv] ssid
1403 * [tlv] supported rates
1404 * [tlv] parameter set (FH/DS)
1405 * [tlv] parameter set (IBSS)
1406 * [tlv] extended rate phy (ERP)
1407 * [tlv] extended supported rates
1408 * [tlv] WPA
1409 * [tlv] WME (optional)
1410 */
1411 m = ieee80211_getmgtframe(&frm,
1412 8
1413 + sizeof(u_int16_t)
1414 + sizeof(u_int16_t)
1415 + 2 + IEEE80211_NWID_LEN
1416 + 2 + IEEE80211_RATE_SIZE
1417 + 7 /* max(7,3) */
1418 + 6
1419 + 3
1420 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1421 /* XXX !WPA1+WPA2 fits w/o a cluster */
1422 + (ic->ic_flags & IEEE80211_F_WPA ?
1423 2*sizeof(struct ieee80211_ie_wpa) : 0)
1424 + sizeof(struct ieee80211_wme_param)
1425 );
1426 if (m == NULL)
1427 senderr(ENOMEM, is_tx_nobuf);
1428
1429 memset(frm, 0, 8); /* timestamp should be filled later */
1430 frm += 8;
1431 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
1432 frm += 2;
1433 if (ic->ic_opmode == IEEE80211_M_IBSS)
1434 capinfo = IEEE80211_CAPINFO_IBSS;
1435 else
1436 capinfo = IEEE80211_CAPINFO_ESS;
1437 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1438 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1439 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1440 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1441 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1442 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1443 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1444 *(u_int16_t *)frm = htole16(capinfo);
1445 frm += 2;
1446
1447 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1448 ic->ic_bss->ni_esslen);
1449 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1450
1451 if (ic->ic_phytype == IEEE80211_T_FH) {
1452 *frm++ = IEEE80211_ELEMID_FHPARMS;
1453 *frm++ = 5;
1454 *frm++ = ni->ni_fhdwell & 0x00ff;
1455 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1456 *frm++ = IEEE80211_FH_CHANSET(
1457 ieee80211_chan2ieee(ic, ic->ic_curchan));
1458 *frm++ = IEEE80211_FH_CHANPAT(
1459 ieee80211_chan2ieee(ic, ic->ic_curchan));
1460 *frm++ = ni->ni_fhindex;
1461 } else {
1462 *frm++ = IEEE80211_ELEMID_DSPARMS;
1463 *frm++ = 1;
1464 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1465 }
1466
1467 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1468 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1469 *frm++ = 2;
1470 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1471 }
1472 if (ic->ic_flags & IEEE80211_F_WPA)
1473 frm = ieee80211_add_wpa(frm, ic);
1474 if (ic->ic_curmode == IEEE80211_MODE_11G)
1475 frm = ieee80211_add_erp(frm, ic);
1476 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1477 if (ic->ic_flags & IEEE80211_F_WME)
1478 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1479 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1480 break;
1481
1482 case IEEE80211_FC0_SUBTYPE_AUTH:
1483 status = arg >> 16;
1484 arg &= 0xffff;
1485 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1486 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1487 ni->ni_challenge != NULL);
1488
1489 /*
1490 * Deduce whether we're doing open authentication or
1491 * shared key authentication. We do the latter if
1492 * we're in the middle of a shared key authentication
1493 * handshake or if we're initiating an authentication
1494 * request and configured to use shared key.
1495 */
1496 is_shared_key = has_challenge ||
1497 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1498 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1499 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1500
1501 m = ieee80211_getmgtframe(&frm,
1502 3 * sizeof(u_int16_t)
1503 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1504 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
1505 );
1506 if (m == NULL)
1507 senderr(ENOMEM, is_tx_nobuf);
1508
1509 ((u_int16_t *)frm)[0] =
1510 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1511 : htole16(IEEE80211_AUTH_ALG_OPEN);
1512 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */
1513 ((u_int16_t *)frm)[2] = htole16(status);/* status */
1514
1515 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1516 ((u_int16_t *)frm)[3] =
1517 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1518 IEEE80211_ELEMID_CHALLENGE);
1519 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
1520 IEEE80211_CHALLENGE_LEN);
1521 m->m_pkthdr.len = m->m_len =
1522 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
1523 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1524 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1525 "[%s] request encrypt frame (%s)\n",
1526 ether_sprintf(ni->ni_macaddr), __func__);
1527 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1528 }
1529 } else
1530 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
1531
1532 /* XXX not right for shared key */
1533 if (status == IEEE80211_STATUS_SUCCESS)
1534 IEEE80211_NODE_STAT(ni, tx_auth);
1535 else
1536 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1537
1538 if (ic->ic_opmode == IEEE80211_M_STA)
1539 timer = IEEE80211_TRANS_WAIT;
1540 break;
1541
1542 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1543 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1544 "[%s] send station deauthenticate (reason %d)\n",
1545 ether_sprintf(ni->ni_macaddr), arg);
1546 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1547 if (m == NULL)
1548 senderr(ENOMEM, is_tx_nobuf);
1549 *(u_int16_t *)frm = htole16(arg); /* reason */
1550 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1551
1552 IEEE80211_NODE_STAT(ni, tx_deauth);
1553 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1554
1555 ieee80211_node_unauthorize(ni); /* port closed */
1556 break;
1557
1558 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1559 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1560 /*
1561 * asreq frame format
1562 * [2] capability information
1563 * [2] listen interval
1564 * [6*] current AP address (reassoc only)
1565 * [tlv] ssid
1566 * [tlv] supported rates
1567 * [tlv] extended supported rates
1568 * [tlv] WME
1569 * [tlv] user-specified ie's
1570 */
1571 m = ieee80211_getmgtframe(&frm,
1572 sizeof(u_int16_t)
1573 + sizeof(u_int16_t)
1574 + IEEE80211_ADDR_LEN
1575 + 2 + IEEE80211_NWID_LEN
1576 + 2 + IEEE80211_RATE_SIZE
1577 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1578 + sizeof(struct ieee80211_wme_info)
1579 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1580 );
1581 if (m == NULL)
1582 senderr(ENOMEM, is_tx_nobuf);
1583
1584 capinfo = 0;
1585 if (ic->ic_opmode == IEEE80211_M_IBSS)
1586 capinfo |= IEEE80211_CAPINFO_IBSS;
1587 else /* IEEE80211_M_STA */
1588 capinfo |= IEEE80211_CAPINFO_ESS;
1589 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1590 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1591 /*
1592 * NB: Some 11a AP's reject the request when
1593 * short premable is set.
1594 */
1595 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1596 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1597 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1598 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
1599 (ic->ic_caps & IEEE80211_C_SHSLOT))
1600 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1601 *(u_int16_t *)frm = htole16(capinfo);
1602 frm += 2;
1603
1604 *(u_int16_t *)frm = htole16(ic->ic_lintval);
1605 frm += 2;
1606
1607 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1608 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1609 frm += IEEE80211_ADDR_LEN;
1610 }
1611
1612 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1613 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1614 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1615 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1616 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1617 if (ic->ic_opt_ie != NULL) {
1618 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1619 frm += ic->ic_opt_ie_len;
1620 }
1621 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1622
1623 timer = IEEE80211_TRANS_WAIT;
1624 break;
1625
1626 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1627 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1628 /*
1629 * asreq frame format
1630 * [2] capability information
1631 * [2] status
1632 * [2] association ID
1633 * [tlv] supported rates
1634 * [tlv] extended supported rates
1635 * [tlv] WME (if enabled and STA enabled)
1636 */
1637 m = ieee80211_getmgtframe(&frm,
1638 sizeof(u_int16_t)
1639 + sizeof(u_int16_t)
1640 + sizeof(u_int16_t)
1641 + 2 + IEEE80211_RATE_SIZE
1642 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1643 + sizeof(struct ieee80211_wme_param)
1644 );
1645 if (m == NULL)
1646 senderr(ENOMEM, is_tx_nobuf);
1647
1648 capinfo = IEEE80211_CAPINFO_ESS;
1649 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1650 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1651 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1652 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1653 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1654 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1655 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1656 *(u_int16_t *)frm = htole16(capinfo);
1657 frm += 2;
1658
1659 *(u_int16_t *)frm = htole16(arg); /* status */
1660 frm += 2;
1661
1662 if (arg == IEEE80211_STATUS_SUCCESS) {
1663 *(u_int16_t *)frm = htole16(ni->ni_associd);
1664 IEEE80211_NODE_STAT(ni, tx_assoc);
1665 } else
1666 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1667 frm += 2;
1668
1669 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1670 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1671 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1672 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1673 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1674 break;
1675
1676 case IEEE80211_FC0_SUBTYPE_DISASSOC:
1677 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1678 "[%s] send station disassociate (reason %d)\n",
1679 ether_sprintf(ni->ni_macaddr), arg);
1680 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1681 if (m == NULL)
1682 senderr(ENOMEM, is_tx_nobuf);
1683 *(u_int16_t *)frm = htole16(arg); /* reason */
1684 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1685
1686 IEEE80211_NODE_STAT(ni, tx_disassoc);
1687 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1688 break;
1689
1690 default:
1691 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1692 "[%s] invalid mgmt frame type %u\n",
1693 ether_sprintf(ni->ni_macaddr), type);
1694 senderr(EINVAL, is_tx_unknownmgt);
1695 /* NOTREACHED */
1696 }
1697 ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
1698 if (ret != 0) {
1699bad:
1700 ieee80211_free_node(ni);
1701 }
1702 return ret;
1703#undef senderr
1704}
1705
1706/*
1707 * Build a RTS (Request To Send) control frame.
1708 */
1709struct mbuf *
1710ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh,
1711 uint16_t dur)
1712{
1713 struct ieee80211_frame_rts *rts;
1714 struct mbuf *m;
1715
1716 MGETHDR(m, M_DONTWAIT, MT_DATA);
1717 if (m == NULL)
1718 return NULL;
1719
1720 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1721
1722 rts = mtod(m, struct ieee80211_frame_rts *);
1723 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1724 IEEE80211_FC0_SUBTYPE_RTS;
1725 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1726 *(uint16_t *)rts->i_dur = htole16(dur);
1727 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1728 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1729
1730 return m;
1731}
1732
1733/*
1734 * Build a CTS-to-self (Clear To Send) control frame.
1735 */
1736struct mbuf *
1737ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur)
1738{
1739 struct ieee80211_frame_cts *cts;
1740 struct mbuf *m;
1741
1742 MGETHDR(m, M_DONTWAIT, MT_DATA);
1743 if (m == NULL)
1744 return NULL;
1745
1746 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
1747
1748 cts = mtod(m, struct ieee80211_frame_cts *);
1749 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1750 IEEE80211_FC0_SUBTYPE_CTS;
1751 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1752 *(uint16_t *)cts->i_dur = htole16(dur);
1753 IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr);
1754
1755 return m;
1756}
1757
1758/*
1759 * Allocate a beacon frame and fillin the appropriate bits.
1760 */
1761struct mbuf *
1762ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1763 struct ieee80211_beacon_offsets *bo)
1764{
1765 struct ifnet *ifp = ic->ic_ifp;
1766 struct ieee80211_frame *wh;
1767 struct mbuf *m;
1768 int pktlen;
1769 u_int8_t *frm, *efrm;
1770 u_int16_t capinfo;
1771 struct ieee80211_rateset *rs;
1772
1773 /*
1774 * beacon frame format
1775 * [8] time stamp
1776 * [2] beacon interval
1777 * [2] cabability information
1778 * [tlv] ssid
1779 * [tlv] supported rates
1780 * [3] parameter set (DS)
1781 * [tlv] parameter set (IBSS/TIM)
1782 * [tlv] extended rate phy (ERP)
1783 * [tlv] extended supported rates
1784 * [tlv] WME parameters
1785 * [tlv] WPA/RSN parameters
1786 * XXX Vendor-specific OIDs (e.g. Atheros)
1787 * NB: we allocate the max space required for the TIM bitmap.
1788 */
1789 rs = &ni->ni_rates;
1790 pktlen = 8 /* time stamp */
1791 + sizeof(u_int16_t) /* beacon interval */
1792 + sizeof(u_int16_t) /* capabilities */
1793 + 2 + ni->ni_esslen /* ssid */
1794 + 2 + IEEE80211_RATE_SIZE /* supported rates */
1795 + 2 + 1 /* DS parameters */
1796 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */
1797 + 2 + 1 /* ERP */
1798 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1799 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */
1800 sizeof(struct ieee80211_wme_param) : 0)
1801 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
1802 2*sizeof(struct ieee80211_ie_wpa) : 0)
1803 ;
1804 m = ieee80211_getmgtframe(&frm, pktlen);
1805 if (m == NULL) {
1806 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1807 "%s: cannot get buf; size %u\n", __func__, pktlen);
1808 ic->ic_stats.is_tx_nobuf++;
1809 return NULL;
1810 }
1811
1812 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
1813 frm += 8;
1814 *(u_int16_t *)frm = htole16(ni->ni_intval);
1815 frm += 2;
1816 if (ic->ic_opmode == IEEE80211_M_IBSS)
1817 capinfo = IEEE80211_CAPINFO_IBSS;
1818 else
1819 capinfo = IEEE80211_CAPINFO_ESS;
1820 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1821 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1822 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1823 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1824 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1825 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1826 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1827 bo->bo_caps = (u_int16_t *)frm;
1828 *(u_int16_t *)frm = htole16(capinfo);
1829 frm += 2;
1830 *frm++ = IEEE80211_ELEMID_SSID;
1831 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1832 *frm++ = ni->ni_esslen;
1833 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1834 frm += ni->ni_esslen;
1835 } else
1836 *frm++ = 0;
1837 frm = ieee80211_add_rates(frm, rs);
1838 if (ic->ic_curmode != IEEE80211_MODE_FH) {
1839 *frm++ = IEEE80211_ELEMID_DSPARMS;
1840 *frm++ = 1;
1841 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1842 }
1843 bo->bo_tim = frm;
1844 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1845 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1846 *frm++ = 2;
1847 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1848 bo->bo_tim_len = 0;
1849 } else {
1850 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1851
1852 tie->tim_ie = IEEE80211_ELEMID_TIM;
1853 tie->tim_len = 4; /* length */
1854 tie->tim_count = 0; /* DTIM count */
1855 tie->tim_period = ic->ic_dtim_period; /* DTIM period */
1856 tie->tim_bitctl = 0; /* bitmap control */
1857 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
1858 frm += sizeof(struct ieee80211_tim_ie);
1859 bo->bo_tim_len = 1;
1860 }
1861 bo->bo_trailer = frm;
1862 if (ic->ic_flags & IEEE80211_F_WME) {
1863 bo->bo_wme = frm;
1864 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1865 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1866 }
1867 if (ic->ic_flags & IEEE80211_F_WPA)
1868 frm = ieee80211_add_wpa(frm, ic);
1869 if (ic->ic_curmode == IEEE80211_MODE_11G)
1870 frm = ieee80211_add_erp(frm, ic);
1871 efrm = ieee80211_add_xrates(frm, rs);
1872 bo->bo_trailer_len = efrm - bo->bo_trailer;
1873 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
1874
1875 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1876 IASSERT(m != NULL, ("no space for 802.11 header?"));
1877 wh = mtod(m, struct ieee80211_frame *);
1878 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1879 IEEE80211_FC0_SUBTYPE_BEACON;
1880 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1881 *(u_int16_t *)wh->i_dur = 0;
1882 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1883 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1884 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1885 *(u_int16_t *)wh->i_seq = 0;
1886
1887 return m;
1888}
1889
1890/*
1891 * Update the dynamic parts of a beacon frame based on the current state.
1892 */
1893int
1894ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1895 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1896{
1897 int len_changed = 0;
1898 u_int16_t capinfo;
1899
1900 IEEE80211_BEACON_LOCK(ic);
1901 /* XXX faster to recalculate entirely or just changes? */
1902 if (ic->ic_opmode == IEEE80211_M_IBSS)
1903 capinfo = IEEE80211_CAPINFO_IBSS;
1904 else
1905 capinfo = IEEE80211_CAPINFO_ESS;
1906 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1907 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1908 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1909 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1910 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1911 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1912 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1913 *bo->bo_caps = htole16(capinfo);
1914
1915 if (ic->ic_flags & IEEE80211_F_WME) {
1916 struct ieee80211_wme_state *wme = &ic->ic_wme;
1917
1918 /*
1919 * Check for agressive mode change. When there is
1920 * significant high priority traffic in the BSS
1921 * throttle back BE traffic by using conservative
1922 * parameters. Otherwise BE uses agressive params
1923 * to optimize performance of legacy/non-QoS traffic.
1924 */
1925 if (wme->wme_flags & WME_F_AGGRMODE) {
1926 if (wme->wme_hipri_traffic >
1927 wme->wme_hipri_switch_thresh) {
1928 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1929 "%s: traffic %u, disable aggressive mode\n",
1930 __func__, wme->wme_hipri_traffic);
1931 wme->wme_flags &= ~WME_F_AGGRMODE;
1932 ieee80211_wme_updateparams_locked(ic);
1933 wme->wme_hipri_traffic =
1934 wme->wme_hipri_switch_hysteresis;
1935 } else
1936 wme->wme_hipri_traffic = 0;
1937 } else {
1938 if (wme->wme_hipri_traffic <=
1939 wme->wme_hipri_switch_thresh) {
1940 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1941 "%s: traffic %u, enable aggressive mode\n",
1942 __func__, wme->wme_hipri_traffic);
1943 wme->wme_flags |= WME_F_AGGRMODE;
1944 ieee80211_wme_updateparams_locked(ic);
1945 wme->wme_hipri_traffic = 0;
1946 } else
1947 wme->wme_hipri_traffic =
1948 wme->wme_hipri_switch_hysteresis;
1949 }
1950 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
1951 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
1952 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1953 }
1954 }
1955
1956#ifndef IEEE80211_NO_HOSTAP
1957 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
1958 struct ieee80211_tim_ie *tie =
1959 (struct ieee80211_tim_ie *) bo->bo_tim;
1960 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
1961 u_int timlen, timoff, i;
1962 /*
1963 * ATIM/DTIM needs updating. If it fits in the
1964 * current space allocated then just copy in the
1965 * new bits. Otherwise we need to move any trailing
1966 * data to make room. Note that we know there is
1967 * contiguous space because ieee80211_beacon_allocate
1968 * insures there is space in the mbuf to write a
1969 * maximal-size virtual bitmap (based on ic_max_aid).
1970 */
1971 /*
1972 * Calculate the bitmap size and offset, copy any
1973 * trailer out of the way, and then copy in the
1974 * new bitmap and update the information element.
1975 * Note that the tim bitmap must contain at least
1976 * one byte and any offset must be even.
1977 */
1978 if (ic->ic_ps_pending != 0) {
1979 timoff = 128; /* impossibly large */
1980 for (i = 0; i < ic->ic_tim_len; i++)
1981 if (ic->ic_tim_bitmap[i]) {
1982 timoff = i &~ 1;
1983 break;
1984 }
1985 IASSERT(timoff != 128, ("tim bitmap empty!"));
1986 for (i = ic->ic_tim_len-1; i >= timoff; i--)
1987 if (ic->ic_tim_bitmap[i])
1988 break;
1989 timlen = 1 + (i - timoff);
1990 } else {
1991 timoff = 0;
1992 timlen = 1;
1993 }
1994 if (timlen != bo->bo_tim_len) {
1995 /* copy up/down trailer */
1996 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
1997 bo->bo_trailer_len);
1998 bo->bo_trailer = tie->tim_bitmap+timlen;
1999 bo->bo_wme = bo->bo_trailer;
2000 bo->bo_tim_len = timlen;
2001
2002 /* update information element */
2003 tie->tim_len = 3 + timlen;
2004 tie->tim_bitctl = timoff;
2005 len_changed = 1;
2006 }
2007 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
2008 bo->bo_tim_len);
2009
2010 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
2011
2012 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2013 "%s: TIM updated, pending %u, off %u, len %u\n",
2014 __func__, ic->ic_ps_pending, timoff, timlen);
2015 }
2016 /* count down DTIM period */
2017 if (tie->tim_count == 0)
2018 tie->tim_count = tie->tim_period - 1;
2019 else
2020 tie->tim_count--;
2021 /* update state for buffered multicast frames on DTIM */
2022 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
2023 tie->tim_bitctl |= 1;
2024 else
2025 tie->tim_bitctl &= ~1;
2026 }
2027#endif /* !IEEE80211_NO_HOSTAP */
2028 IEEE80211_BEACON_UNLOCK(ic);
2029
2030 return len_changed;
2031}
2032
2033/*
2034 * Save an outbound packet for a node in power-save sleep state.
2035 * The new packet is placed on the node's saved queue, and the TIM
2036 * is changed, if necessary.
2037 */
2038void
2039ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
2040 struct mbuf *m)
2041{
2042 int qlen, age;
2043
2044 IEEE80211_NODE_SAVEQ_LOCK(ni);
2045 if (IF_QFULL(&ni->ni_savedq)) {
2046 IF_DROP(&ni->ni_savedq);
2047 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2048 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2049 "[%s] pwr save q overflow, drops %d (size %d)\n",
2050 ether_sprintf(ni->ni_macaddr),
2051 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
2052#ifdef IEEE80211_DEBUG
2053 if (ieee80211_msg_dumppkts(ic))
2054 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
2055#endif
2056 m_freem(m);
2057 return;
2058 }
2059 /*
2060 * Tag the frame with its expiry time and insert
2061 * it in the queue. The aging interval is 4 times
2062 * the listen interval specified by the station.
2063 * Frames that sit around too long are reclaimed
2064 * using this information.
2065 */
2066 /* XXX handle overflow? */
2067 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
2068 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
2069 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2070
2071 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2072 "[%s] save frame with age %d, %u now queued\n",
2073 ether_sprintf(ni->ni_macaddr), age, qlen);
2074
2075 if (qlen == 1)
2076 ic->ic_set_tim(ni, 1);
2077}
2078