1/* $NetBSD: vfs_lockf.c,v 1.73 2011/01/31 08:25:32 dholland Exp $ */
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.73 2011/01/31 08:25:32 dholland Exp $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/file.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/pool.h>
47#include <sys/fcntl.h>
48#include <sys/lockf.h>
49#include <sys/atomic.h>
50#include <sys/kauth.h>
51#include <sys/uidinfo.h>
52
53/*
54 * The lockf structure is a kernel structure which contains the information
55 * associated with a byte range lock. The lockf structures are linked into
56 * the vnode structure. Locks are sorted by the starting byte of the lock for
57 * efficiency.
58 *
59 * lf_next is used for two purposes, depending on whether the lock is
60 * being held, or is in conflict with an existing lock. If this lock
61 * is held, it indicates the next lock on the same vnode.
62 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 */
65
66TAILQ_HEAD(locklist, lockf);
67
68struct lockf {
69 kcondvar_t lf_cv; /* Signalling */
70 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
72 off_t lf_start; /* The byte # of the start of the lock */
73 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
74 void *lf_id; /* process or file description holding lock */
75 struct lockf **lf_head; /* Back pointer to the head of lockf list */
76 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
77 struct locklist lf_blkhd; /* List of requests blocked on this lock */
78 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
79 uid_t lf_uid; /* User ID responsible */
80};
81
82/* Maximum length of sleep chains to traverse to try and detect deadlock. */
83#define MAXDEPTH 50
84
85static pool_cache_t lockf_cache;
86static kmutex_t *lockf_lock;
87static char lockstr[] = "lockf";
88
89/*
90 * This variable controls the maximum number of processes that will
91 * be checked in doing deadlock detection.
92 */
93int maxlockdepth = MAXDEPTH;
94
95#ifdef LOCKF_DEBUG
96int lockf_debug = 0;
97#endif
98
99#define SELF 0x1
100#define OTHERS 0x2
101
102/*
103 * XXX TODO
104 * Misc cleanups: "void *id" should be visible in the API as a
105 * "struct proc *".
106 * (This requires rototilling all VFS's which support advisory locking).
107 */
108
109/*
110 * If there's a lot of lock contention on a single vnode, locking
111 * schemes which allow for more paralleism would be needed. Given how
112 * infrequently byte-range locks are actually used in typical BSD
113 * code, a more complex approach probably isn't worth it.
114 */
115
116/*
117 * We enforce a limit on locks by uid, so that a single user cannot
118 * run the kernel out of memory. For now, the limit is pretty coarse.
119 * There is no limit on root.
120 *
121 * Splitting a lock will always succeed, regardless of current allocations.
122 * If you're slightly above the limit, we still have to permit an allocation
123 * so that the unlock can succeed. If the unlocking causes too many splits,
124 * however, you're totally cutoff.
125 */
126int maxlocksperuid = 1024;
127
128#ifdef LOCKF_DEBUG
129/*
130 * Print out a lock.
131 */
132static void
133lf_print(const char *tag, struct lockf *lock)
134{
135
136 printf("%s: lock %p for ", tag, lock);
137 if (lock->lf_flags & F_POSIX)
138 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
139 else
140 printf("file %p", (struct file *)lock->lf_id);
141 printf(" %s, start %jd, end %jd",
142 lock->lf_type == F_RDLCK ? "shared" :
143 lock->lf_type == F_WRLCK ? "exclusive" :
144 lock->lf_type == F_UNLCK ? "unlock" :
145 "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
146 if (TAILQ_FIRST(&lock->lf_blkhd))
147 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
148 else
149 printf("\n");
150}
151
152static void
153lf_printlist(const char *tag, struct lockf *lock)
154{
155 struct lockf *lf, *blk;
156
157 printf("%s: Lock list:\n", tag);
158 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
159 printf("\tlock %p for ", lf);
160 if (lf->lf_flags & F_POSIX)
161 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
162 else
163 printf("file %p", (struct file *)lf->lf_id);
164 printf(", %s, start %jd, end %jd",
165 lf->lf_type == F_RDLCK ? "shared" :
166 lf->lf_type == F_WRLCK ? "exclusive" :
167 lf->lf_type == F_UNLCK ? "unlock" :
168 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
169 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
170 if (blk->lf_flags & F_POSIX)
171 printf("; proc %d",
172 ((struct proc *)blk->lf_id)->p_pid);
173 else
174 printf("; file %p", (struct file *)blk->lf_id);
175 printf(", %s, start %jd, end %jd",
176 blk->lf_type == F_RDLCK ? "shared" :
177 blk->lf_type == F_WRLCK ? "exclusive" :
178 blk->lf_type == F_UNLCK ? "unlock" :
179 "unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
180 if (TAILQ_FIRST(&blk->lf_blkhd))
181 panic("lf_printlist: bad list");
182 }
183 printf("\n");
184 }
185}
186#endif /* LOCKF_DEBUG */
187
188/*
189 * 3 options for allowfail.
190 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
191 */
192static struct lockf *
193lf_alloc(int allowfail)
194{
195 struct uidinfo *uip;
196 struct lockf *lock;
197 u_long lcnt;
198 const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
199
200 uip = uid_find(uid);
201 lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
202 if (uid && allowfail && lcnt >
203 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
204 atomic_dec_ulong(&uip->ui_lockcnt);
205 return NULL;
206 }
207
208 lock = pool_cache_get(lockf_cache, PR_WAITOK);
209 lock->lf_uid = uid;
210 return lock;
211}
212
213static void
214lf_free(struct lockf *lock)
215{
216 struct uidinfo *uip;
217
218 uip = uid_find(lock->lf_uid);
219 atomic_dec_ulong(&uip->ui_lockcnt);
220 pool_cache_put(lockf_cache, lock);
221}
222
223static int
224lf_ctor(void *arg, void *obj, int flag)
225{
226 struct lockf *lock;
227
228 lock = obj;
229 cv_init(&lock->lf_cv, lockstr);
230
231 return 0;
232}
233
234static void
235lf_dtor(void *arg, void *obj)
236{
237 struct lockf *lock;
238
239 lock = obj;
240 cv_destroy(&lock->lf_cv);
241}
242
243/*
244 * Walk the list of locks for an inode to
245 * find an overlapping lock (if any).
246 *
247 * NOTE: this returns only the FIRST overlapping lock. There
248 * may be more than one.
249 */
250static int
251lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
252 struct lockf ***prev, struct lockf **overlap)
253{
254 off_t start, end;
255
256 *overlap = lf;
257 if (lf == NULL)
258 return 0;
259#ifdef LOCKF_DEBUG
260 if (lockf_debug & 2)
261 lf_print("lf_findoverlap: looking for overlap in", lock);
262#endif /* LOCKF_DEBUG */
263 start = lock->lf_start;
264 end = lock->lf_end;
265 while (lf != NULL) {
266 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
267 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
268 *prev = &lf->lf_next;
269 *overlap = lf = lf->lf_next;
270 continue;
271 }
272#ifdef LOCKF_DEBUG
273 if (lockf_debug & 2)
274 lf_print("\tchecking", lf);
275#endif /* LOCKF_DEBUG */
276 /*
277 * OK, check for overlap
278 *
279 * Six cases:
280 * 0) no overlap
281 * 1) overlap == lock
282 * 2) overlap contains lock
283 * 3) lock contains overlap
284 * 4) overlap starts before lock
285 * 5) overlap ends after lock
286 */
287 if ((lf->lf_end != -1 && start > lf->lf_end) ||
288 (end != -1 && lf->lf_start > end)) {
289 /* Case 0 */
290#ifdef LOCKF_DEBUG
291 if (lockf_debug & 2)
292 printf("no overlap\n");
293#endif /* LOCKF_DEBUG */
294 if ((type & SELF) && end != -1 && lf->lf_start > end)
295 return 0;
296 *prev = &lf->lf_next;
297 *overlap = lf = lf->lf_next;
298 continue;
299 }
300 if ((lf->lf_start == start) && (lf->lf_end == end)) {
301 /* Case 1 */
302#ifdef LOCKF_DEBUG
303 if (lockf_debug & 2)
304 printf("overlap == lock\n");
305#endif /* LOCKF_DEBUG */
306 return 1;
307 }
308 if ((lf->lf_start <= start) &&
309 (end != -1) &&
310 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
311 /* Case 2 */
312#ifdef LOCKF_DEBUG
313 if (lockf_debug & 2)
314 printf("overlap contains lock\n");
315#endif /* LOCKF_DEBUG */
316 return 2;
317 }
318 if (start <= lf->lf_start &&
319 (end == -1 ||
320 (lf->lf_end != -1 && end >= lf->lf_end))) {
321 /* Case 3 */
322#ifdef LOCKF_DEBUG
323 if (lockf_debug & 2)
324 printf("lock contains overlap\n");
325#endif /* LOCKF_DEBUG */
326 return 3;
327 }
328 if ((lf->lf_start < start) &&
329 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
330 /* Case 4 */
331#ifdef LOCKF_DEBUG
332 if (lockf_debug & 2)
333 printf("overlap starts before lock\n");
334#endif /* LOCKF_DEBUG */
335 return 4;
336 }
337 if ((lf->lf_start > start) &&
338 (end != -1) &&
339 ((lf->lf_end > end) || (lf->lf_end == -1))) {
340 /* Case 5 */
341#ifdef LOCKF_DEBUG
342 if (lockf_debug & 2)
343 printf("overlap ends after lock\n");
344#endif /* LOCKF_DEBUG */
345 return 5;
346 }
347 panic("lf_findoverlap: default");
348 }
349 return 0;
350}
351
352/*
353 * Split a lock and a contained region into
354 * two or three locks as necessary.
355 */
356static void
357lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
358{
359 struct lockf *splitlock;
360
361#ifdef LOCKF_DEBUG
362 if (lockf_debug & 2) {
363 lf_print("lf_split", lock1);
364 lf_print("splitting from", lock2);
365 }
366#endif /* LOCKF_DEBUG */
367 /*
368 * Check to see if spliting into only two pieces.
369 */
370 if (lock1->lf_start == lock2->lf_start) {
371 lock1->lf_start = lock2->lf_end + 1;
372 lock2->lf_next = lock1;
373 return;
374 }
375 if (lock1->lf_end == lock2->lf_end) {
376 lock1->lf_end = lock2->lf_start - 1;
377 lock2->lf_next = lock1->lf_next;
378 lock1->lf_next = lock2;
379 return;
380 }
381 /*
382 * Make a new lock consisting of the last part of
383 * the encompassing lock
384 */
385 splitlock = *sparelock;
386 *sparelock = NULL;
387 cv_destroy(&splitlock->lf_cv);
388 memcpy(splitlock, lock1, sizeof(*splitlock));
389 cv_init(&splitlock->lf_cv, lockstr);
390
391 splitlock->lf_start = lock2->lf_end + 1;
392 TAILQ_INIT(&splitlock->lf_blkhd);
393 lock1->lf_end = lock2->lf_start - 1;
394 /*
395 * OK, now link it in
396 */
397 splitlock->lf_next = lock1->lf_next;
398 lock2->lf_next = splitlock;
399 lock1->lf_next = lock2;
400}
401
402/*
403 * Wakeup a blocklist
404 */
405static void
406lf_wakelock(struct lockf *listhead)
407{
408 struct lockf *wakelock;
409
410 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
411 KASSERT(wakelock->lf_next == listhead);
412 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
413 wakelock->lf_next = NULL;
414#ifdef LOCKF_DEBUG
415 if (lockf_debug & 2)
416 lf_print("lf_wakelock: awakening", wakelock);
417#endif
418 cv_broadcast(&wakelock->lf_cv);
419 }
420}
421
422/*
423 * Remove a byte-range lock on an inode.
424 *
425 * Generally, find the lock (or an overlap to that lock)
426 * and remove it (or shrink it), then wakeup anyone we can.
427 */
428static int
429lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
430{
431 struct lockf **head = unlock->lf_head;
432 struct lockf *lf = *head;
433 struct lockf *overlap, **prev;
434 int ovcase;
435
436 if (lf == NULL)
437 return 0;
438#ifdef LOCKF_DEBUG
439 if (unlock->lf_type != F_UNLCK)
440 panic("lf_clearlock: bad type");
441 if (lockf_debug & 1)
442 lf_print("lf_clearlock", unlock);
443#endif /* LOCKF_DEBUG */
444 prev = head;
445 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
446 &prev, &overlap)) != 0) {
447 /*
448 * Wakeup the list of locks to be retried.
449 */
450 lf_wakelock(overlap);
451
452 switch (ovcase) {
453
454 case 1: /* overlap == lock */
455 *prev = overlap->lf_next;
456 lf_free(overlap);
457 break;
458
459 case 2: /* overlap contains lock: split it */
460 if (overlap->lf_start == unlock->lf_start) {
461 overlap->lf_start = unlock->lf_end + 1;
462 break;
463 }
464 lf_split(overlap, unlock, sparelock);
465 overlap->lf_next = unlock->lf_next;
466 break;
467
468 case 3: /* lock contains overlap */
469 *prev = overlap->lf_next;
470 lf = overlap->lf_next;
471 lf_free(overlap);
472 continue;
473
474 case 4: /* overlap starts before lock */
475 overlap->lf_end = unlock->lf_start - 1;
476 prev = &overlap->lf_next;
477 lf = overlap->lf_next;
478 continue;
479
480 case 5: /* overlap ends after lock */
481 overlap->lf_start = unlock->lf_end + 1;
482 break;
483 }
484 break;
485 }
486#ifdef LOCKF_DEBUG
487 if (lockf_debug & 1)
488 lf_printlist("lf_clearlock", unlock);
489#endif /* LOCKF_DEBUG */
490 return 0;
491}
492
493/*
494 * Walk the list of locks for an inode and
495 * return the first blocking lock.
496 */
497static struct lockf *
498lf_getblock(struct lockf *lock)
499{
500 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
501
502 prev = lock->lf_head;
503 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
504 /*
505 * We've found an overlap, see if it blocks us
506 */
507 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
508 return overlap;
509 /*
510 * Nope, point to the next one on the list and
511 * see if it blocks us
512 */
513 lf = overlap->lf_next;
514 }
515 return NULL;
516}
517
518/*
519 * Set a byte-range lock.
520 */
521static int
522lf_setlock(struct lockf *lock, struct lockf **sparelock,
523 kmutex_t *interlock)
524{
525 struct lockf *block;
526 struct lockf **head = lock->lf_head;
527 struct lockf **prev, *overlap, *ltmp;
528 int ovcase, needtolink, error;
529
530#ifdef LOCKF_DEBUG
531 if (lockf_debug & 1)
532 lf_print("lf_setlock", lock);
533#endif /* LOCKF_DEBUG */
534
535 /*
536 * Scan lock list for this file looking for locks that would block us.
537 */
538 while ((block = lf_getblock(lock)) != NULL) {
539 /*
540 * Free the structure and return if nonblocking.
541 */
542 if ((lock->lf_flags & F_WAIT) == 0) {
543 lf_free(lock);
544 return EAGAIN;
545 }
546 /*
547 * We are blocked. Since flock style locks cover
548 * the whole file, there is no chance for deadlock.
549 * For byte-range locks we must check for deadlock.
550 *
551 * Deadlock detection is done by looking through the
552 * wait channels to see if there are any cycles that
553 * involve us. MAXDEPTH is set just to make sure we
554 * do not go off into neverneverland.
555 */
556 if ((lock->lf_flags & F_POSIX) &&
557 (block->lf_flags & F_POSIX)) {
558 struct lwp *wlwp;
559 volatile const struct lockf *waitblock;
560 int i = 0;
561 struct proc *p;
562
563 p = (struct proc *)block->lf_id;
564 KASSERT(p != NULL);
565 while (i++ < maxlockdepth) {
566 mutex_enter(p->p_lock);
567 if (p->p_nlwps > 1) {
568 mutex_exit(p->p_lock);
569 break;
570 }
571 wlwp = LIST_FIRST(&p->p_lwps);
572 lwp_lock(wlwp);
573 if (wlwp->l_wchan == NULL ||
574 wlwp->l_wmesg != lockstr) {
575 lwp_unlock(wlwp);
576 mutex_exit(p->p_lock);
577 break;
578 }
579 waitblock = wlwp->l_wchan;
580 lwp_unlock(wlwp);
581 mutex_exit(p->p_lock);
582 /* Get the owner of the blocking lock */
583 waitblock = waitblock->lf_next;
584 if ((waitblock->lf_flags & F_POSIX) == 0)
585 break;
586 p = (struct proc *)waitblock->lf_id;
587 if (p == curproc) {
588 lf_free(lock);
589 return EDEADLK;
590 }
591 }
592 /*
593 * If we're still following a dependency chain
594 * after maxlockdepth iterations, assume we're in
595 * a cycle to be safe.
596 */
597 if (i >= maxlockdepth) {
598 lf_free(lock);
599 return EDEADLK;
600 }
601 }
602 /*
603 * For flock type locks, we must first remove
604 * any shared locks that we hold before we sleep
605 * waiting for an exclusive lock.
606 */
607 if ((lock->lf_flags & F_FLOCK) &&
608 lock->lf_type == F_WRLCK) {
609 lock->lf_type = F_UNLCK;
610 (void) lf_clearlock(lock, NULL);
611 lock->lf_type = F_WRLCK;
612 }
613 /*
614 * Add our lock to the blocked list and sleep until we're free.
615 * Remember who blocked us (for deadlock detection).
616 */
617 lock->lf_next = block;
618 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
619#ifdef LOCKF_DEBUG
620 if (lockf_debug & 1) {
621 lf_print("lf_setlock: blocking on", block);
622 lf_printlist("lf_setlock", block);
623 }
624#endif /* LOCKF_DEBUG */
625 error = cv_wait_sig(&lock->lf_cv, interlock);
626
627 /*
628 * We may have been awoken by a signal (in
629 * which case we must remove ourselves from the
630 * blocked list) and/or by another process
631 * releasing a lock (in which case we have already
632 * been removed from the blocked list and our
633 * lf_next field set to NULL).
634 */
635 if (lock->lf_next != NULL) {
636 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
637 lock->lf_next = NULL;
638 }
639 if (error) {
640 lf_free(lock);
641 return error;
642 }
643 }
644 /*
645 * No blocks!! Add the lock. Note that we will
646 * downgrade or upgrade any overlapping locks this
647 * process already owns.
648 *
649 * Skip over locks owned by other processes.
650 * Handle any locks that overlap and are owned by ourselves.
651 */
652 prev = head;
653 block = *head;
654 needtolink = 1;
655 for (;;) {
656 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
657 if (ovcase)
658 block = overlap->lf_next;
659 /*
660 * Six cases:
661 * 0) no overlap
662 * 1) overlap == lock
663 * 2) overlap contains lock
664 * 3) lock contains overlap
665 * 4) overlap starts before lock
666 * 5) overlap ends after lock
667 */
668 switch (ovcase) {
669 case 0: /* no overlap */
670 if (needtolink) {
671 *prev = lock;
672 lock->lf_next = overlap;
673 }
674 break;
675
676 case 1: /* overlap == lock */
677 /*
678 * If downgrading lock, others may be
679 * able to acquire it.
680 */
681 if (lock->lf_type == F_RDLCK &&
682 overlap->lf_type == F_WRLCK)
683 lf_wakelock(overlap);
684 overlap->lf_type = lock->lf_type;
685 lf_free(lock);
686 lock = overlap; /* for debug output below */
687 break;
688
689 case 2: /* overlap contains lock */
690 /*
691 * Check for common starting point and different types.
692 */
693 if (overlap->lf_type == lock->lf_type) {
694 lf_free(lock);
695 lock = overlap; /* for debug output below */
696 break;
697 }
698 if (overlap->lf_start == lock->lf_start) {
699 *prev = lock;
700 lock->lf_next = overlap;
701 overlap->lf_start = lock->lf_end + 1;
702 } else
703 lf_split(overlap, lock, sparelock);
704 lf_wakelock(overlap);
705 break;
706
707 case 3: /* lock contains overlap */
708 /*
709 * If downgrading lock, others may be able to
710 * acquire it, otherwise take the list.
711 */
712 if (lock->lf_type == F_RDLCK &&
713 overlap->lf_type == F_WRLCK) {
714 lf_wakelock(overlap);
715 } else {
716 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
717 KASSERT(ltmp->lf_next == overlap);
718 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
719 lf_block);
720 ltmp->lf_next = lock;
721 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
722 ltmp, lf_block);
723 }
724 }
725 /*
726 * Add the new lock if necessary and delete the overlap.
727 */
728 if (needtolink) {
729 *prev = lock;
730 lock->lf_next = overlap->lf_next;
731 prev = &lock->lf_next;
732 needtolink = 0;
733 } else
734 *prev = overlap->lf_next;
735 lf_free(overlap);
736 continue;
737
738 case 4: /* overlap starts before lock */
739 /*
740 * Add lock after overlap on the list.
741 */
742 lock->lf_next = overlap->lf_next;
743 overlap->lf_next = lock;
744 overlap->lf_end = lock->lf_start - 1;
745 prev = &lock->lf_next;
746 lf_wakelock(overlap);
747 needtolink = 0;
748 continue;
749
750 case 5: /* overlap ends after lock */
751 /*
752 * Add the new lock before overlap.
753 */
754 if (needtolink) {
755 *prev = lock;
756 lock->lf_next = overlap;
757 }
758 overlap->lf_start = lock->lf_end + 1;
759 lf_wakelock(overlap);
760 break;
761 }
762 break;
763 }
764#ifdef LOCKF_DEBUG
765 if (lockf_debug & 1) {
766 lf_print("lf_setlock: got the lock", lock);
767 lf_printlist("lf_setlock", lock);
768 }
769#endif /* LOCKF_DEBUG */
770 return 0;
771}
772
773/*
774 * Check whether there is a blocking lock,
775 * and if so return its process identifier.
776 */
777static int
778lf_getlock(struct lockf *lock, struct flock *fl)
779{
780 struct lockf *block;
781
782#ifdef LOCKF_DEBUG
783 if (lockf_debug & 1)
784 lf_print("lf_getlock", lock);
785#endif /* LOCKF_DEBUG */
786
787 if ((block = lf_getblock(lock)) != NULL) {
788 fl->l_type = block->lf_type;
789 fl->l_whence = SEEK_SET;
790 fl->l_start = block->lf_start;
791 if (block->lf_end == -1)
792 fl->l_len = 0;
793 else
794 fl->l_len = block->lf_end - block->lf_start + 1;
795 if (block->lf_flags & F_POSIX)
796 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
797 else
798 fl->l_pid = -1;
799 } else {
800 fl->l_type = F_UNLCK;
801 }
802 return 0;
803}
804
805/*
806 * Do an advisory lock operation.
807 */
808int
809lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
810{
811 struct flock *fl = ap->a_fl;
812 struct lockf *lock = NULL;
813 struct lockf *sparelock;
814 kmutex_t *interlock = lockf_lock;
815 off_t start, end;
816 int error = 0;
817
818 /*
819 * Convert the flock structure into a start and end.
820 */
821 switch (fl->l_whence) {
822 case SEEK_SET:
823 case SEEK_CUR:
824 /*
825 * Caller is responsible for adding any necessary offset
826 * when SEEK_CUR is used.
827 */
828 start = fl->l_start;
829 break;
830
831 case SEEK_END:
832 start = size + fl->l_start;
833 break;
834
835 default:
836 return EINVAL;
837 }
838
839 if (fl->l_len == 0)
840 end = -1;
841 else {
842 if (fl->l_len > 0)
843 end = start + fl->l_len - 1;
844 else {
845 /* lockf() allows -ve lengths */
846 end = start - 1;
847 start += fl->l_len;
848 }
849 }
850 if (start < 0)
851 return EINVAL;
852
853 /*
854 * Allocate locks before acquiring the interlock. We need two
855 * locks in the worst case.
856 */
857 switch (ap->a_op) {
858 case F_SETLK:
859 case F_UNLCK:
860 /*
861 * XXX For F_UNLCK case, we can re-use the lock.
862 */
863 if ((ap->a_flags & F_FLOCK) == 0) {
864 /*
865 * Byte-range lock might need one more lock.
866 */
867 sparelock = lf_alloc(0);
868 if (sparelock == NULL) {
869 error = ENOMEM;
870 goto quit;
871 }
872 break;
873 }
874 /* FALLTHROUGH */
875
876 case F_GETLK:
877 sparelock = NULL;
878 break;
879
880 default:
881 return EINVAL;
882 }
883
884 switch (ap->a_op) {
885 case F_SETLK:
886 lock = lf_alloc(1);
887 break;
888 case F_UNLCK:
889 if (start == 0 || end == -1) {
890 /* never split */
891 lock = lf_alloc(0);
892 } else {
893 /* might split */
894 lock = lf_alloc(2);
895 }
896 break;
897 case F_GETLK:
898 lock = lf_alloc(0);
899 break;
900 }
901 if (lock == NULL) {
902 error = ENOMEM;
903 goto quit;
904 }
905
906 mutex_enter(interlock);
907
908 /*
909 * Avoid the common case of unlocking when inode has no locks.
910 */
911 if (*head == (struct lockf *)0) {
912 if (ap->a_op != F_SETLK) {
913 fl->l_type = F_UNLCK;
914 error = 0;
915 goto quit_unlock;
916 }
917 }
918
919 /*
920 * Create the lockf structure.
921 */
922 lock->lf_start = start;
923 lock->lf_end = end;
924 lock->lf_head = head;
925 lock->lf_type = fl->l_type;
926 lock->lf_next = (struct lockf *)0;
927 TAILQ_INIT(&lock->lf_blkhd);
928 lock->lf_flags = ap->a_flags;
929 if (lock->lf_flags & F_POSIX) {
930 KASSERT(curproc == (struct proc *)ap->a_id);
931 }
932 lock->lf_id = ap->a_id;
933
934 /*
935 * Do the requested operation.
936 */
937 switch (ap->a_op) {
938
939 case F_SETLK:
940 error = lf_setlock(lock, &sparelock, interlock);
941 lock = NULL; /* lf_setlock freed it */
942 break;
943
944 case F_UNLCK:
945 error = lf_clearlock(lock, &sparelock);
946 break;
947
948 case F_GETLK:
949 error = lf_getlock(lock, fl);
950 break;
951
952 default:
953 break;
954 /* NOTREACHED */
955 }
956
957quit_unlock:
958 mutex_exit(interlock);
959quit:
960 if (lock)
961 lf_free(lock);
962 if (sparelock)
963 lf_free(sparelock);
964
965 return error;
966}
967
968/*
969 * Initialize subsystem. XXX We use a global lock. This could be the
970 * vnode interlock, but the deadlock detection code may need to inspect
971 * locks belonging to other files.
972 */
973void
974lf_init(void)
975{
976
977 lockf_cache = pool_cache_init(sizeof(struct lockf), 0, 0, 0, "lockf",
978 NULL, IPL_NONE, lf_ctor, lf_dtor, NULL);
979 lockf_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
980}
981