1/* $NetBSD: subr_kcpuset.c,v 1.11 2014/05/19 20:39:23 rmind Exp $ */
2
3/*-
4 * Copyright (c) 2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Kernel CPU set implementation.
34 *
35 * Interface can be used by kernel subsystems as a unified dynamic CPU
36 * bitset implementation handling many CPUs. Facility also supports early
37 * use by MD code on boot, as it fixups bitsets on further boot.
38 *
39 * TODO:
40 * - Handle "reverse" bitset on fixup/grow.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.11 2014/05/19 20:39:23 rmind Exp $");
45
46#include <sys/param.h>
47#include <sys/types.h>
48
49#include <sys/atomic.h>
50#include <sys/sched.h>
51#include <sys/kcpuset.h>
52#include <sys/pool.h>
53
54/* Number of CPUs to support. */
55#define KC_MAXCPUS roundup2(MAXCPUS, 32)
56
57/*
58 * Structure of dynamic CPU set in the kernel.
59 */
60struct kcpuset {
61 uint32_t bits[0];
62};
63
64typedef struct kcpuset_impl {
65 /* Reference count. */
66 u_int kc_refcnt;
67 /* Next to free, if non-NULL (used when multiple references). */
68 struct kcpuset * kc_next;
69 /* Actual variable-sized field of bits. */
70 struct kcpuset kc_field;
71} kcpuset_impl_t;
72
73#define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field))
74#define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
75#define KC_GETCSTRUCT(b) ((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
76
77/* Sizes of a single bitset. */
78#define KC_SHIFT 5
79#define KC_MASK 31
80
81/* An array of noted early kcpuset creations and data. */
82#define KC_SAVE_NITEMS 8
83
84/* Structures for early boot mechanism (must be statically initialised). */
85static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS];
86static uint32_t kc_bits_early[KC_SAVE_NITEMS];
87static int kc_last_idx = 0;
88static bool kc_initialised = false;
89
90#define KC_BITSIZE_EARLY sizeof(kc_bits_early[0])
91#define KC_NFIELDS_EARLY 1
92
93/*
94 * The size of whole bitset fields and amount of fields.
95 * The whole size must statically initialise for early case.
96 */
97static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
98static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY;
99
100static pool_cache_t kc_cache __read_mostly;
101
102static kcpuset_t * kcpuset_create_raw(bool);
103
104/*
105 * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
106 * to dynamically allocated sets.
107 */
108void
109kcpuset_sysinit(void)
110{
111 kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
112 int i, s;
113
114 /* Set a kcpuset_t sizes. */
115 kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
116 kc_bitsize = sizeof(uint32_t) * kc_nfields;
117 KASSERT(kc_nfields != 0 && kc_bitsize != 0);
118
119 kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize,
120 coherency_unit, 0, 0, "kcpuset", NULL, IPL_NONE, NULL, NULL, NULL);
121
122 /* First, pre-allocate kcpuset entries. */
123 for (i = 0; i < kc_last_idx; i++) {
124 kcp = kcpuset_create_raw(true);
125 kc_dynamic[i] = kcp;
126 }
127
128 /*
129 * Prepare to convert all early noted kcpuset uses to dynamic sets.
130 * All processors, except the one we are currently running (primary),
131 * must not be spinned yet. Since MD facilities can use kcpuset,
132 * raise the IPL to high.
133 */
134 KASSERT(mp_online == false);
135
136 s = splhigh();
137 for (i = 0; i < kc_last_idx; i++) {
138 /*
139 * Transfer the bits from early static storage to the kcpuset.
140 */
141 KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
142 memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
143
144 /*
145 * Store the new pointer, pointing to the allocated kcpuset.
146 * Note: we are not in an interrupt context and it is the only
147 * CPU running - thus store is safe (e.g. no need for pointer
148 * variable to be volatile).
149 */
150 *kc_noted_early[i] = kc_dynamic[i];
151 }
152 kc_initialised = true;
153 kc_last_idx = 0;
154 splx(s);
155}
156
157/*
158 * kcpuset_early_ptr: note an early boot use by saving the pointer and
159 * returning a pointer to a static, temporary bit field.
160 */
161static kcpuset_t *
162kcpuset_early_ptr(kcpuset_t **kcptr)
163{
164 kcpuset_t *kcp;
165 int s;
166
167 s = splhigh();
168 if (kc_last_idx < KC_SAVE_NITEMS) {
169 /*
170 * Save the pointer, return pointer to static early field.
171 * Need to zero it out.
172 */
173 kc_noted_early[kc_last_idx] = kcptr;
174 kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
175 kc_last_idx++;
176 memset(kcp, 0, KC_BITSIZE_EARLY);
177 KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
178 } else {
179 panic("kcpuset(9): all early-use entries exhausted; "
180 "increase KC_SAVE_NITEMS\n");
181 }
182 splx(s);
183
184 return kcp;
185}
186
187/*
188 * Routines to create or destroy the CPU set.
189 * Early boot case is handled.
190 */
191
192static kcpuset_t *
193kcpuset_create_raw(bool zero)
194{
195 kcpuset_impl_t *kc;
196
197 kc = pool_cache_get(kc_cache, PR_WAITOK);
198 kc->kc_refcnt = 1;
199 kc->kc_next = NULL;
200
201 if (zero) {
202 memset(&kc->kc_field, 0, kc_bitsize);
203 }
204
205 /* Note: return pointer to the actual field of bits. */
206 KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
207 return &kc->kc_field;
208}
209
210void
211kcpuset_create(kcpuset_t **retkcp, bool zero)
212{
213 if (__predict_false(!kc_initialised)) {
214 /* Early boot use - special case. */
215 *retkcp = kcpuset_early_ptr(retkcp);
216 return;
217 }
218 *retkcp = kcpuset_create_raw(zero);
219}
220
221void
222kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
223{
224 kcpuset_create(retkcp, false);
225 memcpy(*retkcp, kcp, kc_bitsize);
226}
227
228void
229kcpuset_destroy(kcpuset_t *kcp)
230{
231 kcpuset_impl_t *kc;
232
233 KASSERT(kc_initialised);
234 KASSERT(kcp != NULL);
235
236 do {
237 kc = KC_GETSTRUCT(kcp);
238 kcp = kc->kc_next;
239 pool_cache_put(kc_cache, kc);
240 } while (kcp);
241}
242
243/*
244 * Routines to reference/unreference the CPU set.
245 * Note: early boot case is not supported by these routines.
246 */
247
248void
249kcpuset_use(kcpuset_t *kcp)
250{
251 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
252
253 KASSERT(kc_initialised);
254 atomic_inc_uint(&kc->kc_refcnt);
255}
256
257void
258kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
259{
260 kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
261
262 KASSERT(kc_initialised);
263 KASSERT(kc->kc_refcnt > 0);
264
265 if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
266 return;
267 }
268 KASSERT(kc->kc_next == NULL);
269 if (lst == NULL) {
270 kcpuset_destroy(kcp);
271 return;
272 }
273 kc->kc_next = *lst;
274 *lst = kcp;
275}
276
277/*
278 * Routines to transfer the CPU set from / to userspace.
279 * Note: early boot case is not supported by these routines.
280 */
281
282int
283kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
284{
285 kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
286
287 KASSERT(kc_initialised);
288 KASSERT(kc->kc_refcnt > 0);
289 KASSERT(kc->kc_next == NULL);
290
291 if (len > kc_bitsize) { /* XXX */
292 return EINVAL;
293 }
294 return copyin(ucp, kcp, len);
295}
296
297int
298kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
299{
300 kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
301
302 KASSERT(kc_initialised);
303 KASSERT(kc->kc_refcnt > 0);
304 KASSERT(kc->kc_next == NULL);
305
306 if (len > kc_bitsize) { /* XXX */
307 return EINVAL;
308 }
309 return copyout(kcp, ucp, len);
310}
311
312void
313kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
314{
315 size_t rlen = MIN(kc_bitsize, len);
316
317 KASSERT(kcp != NULL);
318 memcpy(bitfield, kcp->bits, rlen);
319}
320
321/*
322 * Routines to change bit field - zero, fill, copy, set, unset, etc.
323 */
324
325void
326kcpuset_zero(kcpuset_t *kcp)
327{
328
329 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
330 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
331 memset(kcp, 0, kc_bitsize);
332}
333
334void
335kcpuset_fill(kcpuset_t *kcp)
336{
337
338 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
339 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
340 memset(kcp, ~0, kc_bitsize);
341}
342
343void
344kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
345{
346
347 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
348 KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
349 memcpy(dkcp, skcp, kc_bitsize);
350}
351
352void
353kcpuset_set(kcpuset_t *kcp, cpuid_t i)
354{
355 const size_t j = i >> KC_SHIFT;
356
357 KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
358 KASSERT(j < kc_nfields);
359
360 kcp->bits[j] |= 1 << (i & KC_MASK);
361}
362
363void
364kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
365{
366 const size_t j = i >> KC_SHIFT;
367
368 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
369 KASSERT(j < kc_nfields);
370
371 kcp->bits[j] &= ~(1 << (i & KC_MASK));
372}
373
374bool
375kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
376{
377 const size_t j = i >> KC_SHIFT;
378
379 KASSERT(kcp != NULL);
380 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
381 KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
382 KASSERT(j < kc_nfields);
383
384 return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0;
385}
386
387bool
388kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
389{
390 const size_t j2 = i >> KC_SHIFT;
391 const uint32_t mask = ~(1 << (i & KC_MASK));
392
393 for (size_t j = 0; j < kc_nfields; j++) {
394 const uint32_t bits = kcp->bits[j];
395 if (bits && (j != j2 || (bits & mask) != 0)) {
396 return true;
397 }
398 }
399 return false;
400}
401
402bool
403kcpuset_iszero(const kcpuset_t *kcp)
404{
405
406 for (size_t j = 0; j < kc_nfields; j++) {
407 if (kcp->bits[j] != 0) {
408 return false;
409 }
410 }
411 return true;
412}
413
414bool
415kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
416{
417
418 return memcmp(kcp1, kcp2, kc_bitsize) == 0;
419}
420
421bool
422kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
423{
424
425 for (size_t j = 0; j < kc_nfields; j++) {
426 if (kcp1->bits[j] & kcp2->bits[j])
427 return true;
428 }
429 return false;
430}
431
432cpuid_t
433kcpuset_ffs(const kcpuset_t *kcp)
434{
435
436 for (size_t j = 0; j < kc_nfields; j++) {
437 if (kcp->bits[j])
438 return 32 * j + ffs(kcp->bits[j]);
439 }
440 return 0;
441}
442
443cpuid_t
444kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
445{
446
447 for (size_t j = 0; j < kc_nfields; j++) {
448 uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
449 if (bits)
450 return 32 * j + ffs(bits);
451 }
452 return 0;
453}
454
455void
456kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
457{
458
459 for (size_t j = 0; j < kc_nfields; j++) {
460 kcp1->bits[j] |= kcp2->bits[j];
461 }
462}
463
464void
465kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
466{
467
468 for (size_t j = 0; j < kc_nfields; j++) {
469 kcp1->bits[j] &= kcp2->bits[j];
470 }
471}
472
473void
474kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
475{
476
477 for (size_t j = 0; j < kc_nfields; j++) {
478 kcp1->bits[j] &= ~kcp2->bits[j];
479 }
480}
481
482int
483kcpuset_countset(const kcpuset_t *kcp)
484{
485 int count = 0;
486
487 for (size_t j = 0; j < kc_nfields; j++) {
488 count += popcount32(kcp->bits[j]);
489 }
490 return count;
491}
492
493/*
494 * Routines to set/clear the flags atomically.
495 */
496
497void
498kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
499{
500 const size_t j = i >> KC_SHIFT;
501
502 KASSERT(j < kc_nfields);
503 atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK));
504}
505
506void
507kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
508{
509 const size_t j = i >> KC_SHIFT;
510
511 KASSERT(j < kc_nfields);
512 atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK)));
513}
514
515void
516kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
517{
518
519 for (size_t j = 0; j < kc_nfields; j++) {
520 if (kcp2->bits[j])
521 atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
522 }
523}
524
525void
526kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
527{
528
529 for (size_t j = 0; j < kc_nfields; j++) {
530 if (kcp2->bits[j])
531 atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
532 }
533}
534
535void
536kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
537{
538
539 for (size_t j = 0; j < kc_nfields; j++) {
540 if (kcp2->bits[j])
541 atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
542 }
543}
544