1/* $NetBSD: subr_autoconf.c,v 1.247 2016/07/19 07:44:03 msaitoh Exp $ */
2
3/*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37/*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79#include <sys/cdefs.h>
80__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.247 2016/07/19 07:44:03 msaitoh Exp $");
81
82#ifdef _KERNEL_OPT
83#include "opt_ddb.h"
84#include "drvctl.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/device.h>
89#include <sys/disklabel.h>
90#include <sys/conf.h>
91#include <sys/kauth.h>
92#include <sys/kmem.h>
93#include <sys/systm.h>
94#include <sys/kernel.h>
95#include <sys/errno.h>
96#include <sys/proc.h>
97#include <sys/reboot.h>
98#include <sys/kthread.h>
99#include <sys/buf.h>
100#include <sys/dirent.h>
101#include <sys/mount.h>
102#include <sys/namei.h>
103#include <sys/unistd.h>
104#include <sys/fcntl.h>
105#include <sys/lockf.h>
106#include <sys/callout.h>
107#include <sys/devmon.h>
108#include <sys/cpu.h>
109#include <sys/sysctl.h>
110
111#include <sys/disk.h>
112
113#include <sys/rndsource.h>
114
115#include <machine/limits.h>
116
117/*
118 * Autoconfiguration subroutines.
119 */
120
121/*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124extern krndsource_t rnd_autoconf_source;
125
126/*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130extern struct cfdata cfdata[];
131extern const short cfroots[];
132
133/*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138extern struct cfdriver * const cfdriver_list_initial[];
139
140/*
141 * Initial list of cfattach's.
142 */
143extern const struct cfattachinit cfattachinit[];
144
145/*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150static struct cftable initcftable;
151
152#define ROOT ((device_t)NULL)
153
154struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161};
162
163struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166};
167
168static char *number(char *, int);
169static void mapply(struct matchinfo *, cfdata_t);
170static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171static void config_devdelete(device_t);
172static void config_devunlink(device_t, struct devicelist *);
173static void config_makeroom(int, struct cfdriver *);
174static void config_devlink(device_t);
175static void config_alldevs_enter(struct alldevs_foray *);
176static void config_alldevs_exit(struct alldevs_foray *);
177static void config_add_attrib_dict(device_t);
178
179static void config_collect_garbage(struct devicelist *);
180static void config_dump_garbage(struct devicelist *);
181
182static void pmflock_debug(device_t, const char *, int);
183
184static device_t deviter_next1(deviter_t *);
185static void deviter_reinit(deviter_t *);
186
187struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191};
192
193TAILQ_HEAD(deferred_config_head, deferred_config);
194
195struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199int interrupt_config_threads = 8;
200struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202int mountroot_config_threads = 2;
203static lwp_t **mountroot_config_lwpids;
204static size_t mountroot_config_lwpids_size;
205static bool root_is_mounted = false;
206
207static void config_process_deferred(struct deferred_config_head *, device_t);
208
209/* Hooks to finalize configuration once all real devices have been found. */
210struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214};
215static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217static int config_finalize_done;
218
219/* list of all devices */
220static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221static kmutex_t alldevs_mtx;
222static volatile bool alldevs_garbage = false;
223static volatile devgen_t alldevs_gen = 1;
224static volatile int alldevs_nread = 0;
225static volatile int alldevs_nwrite = 0;
226
227static int config_pending; /* semaphore for mountroot */
228static kmutex_t config_misc_lock;
229static kcondvar_t config_misc_cv;
230
231static bool detachall = false;
232
233#define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236static bool config_initialized = false; /* config_init() has been called. */
237
238static int config_do_twiddle;
239static callout_t config_twiddle_ch;
240
241static void sysctl_detach_setup(struct sysctllog **);
242
243int no_devmon_insert(const char *, prop_dictionary_t);
244int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245
246typedef int (*cfdriver_fn)(struct cfdriver *);
247static int
248frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 const char *style, bool dopanic)
251{
252 void (*pr)(const char *, ...) __printflike(1, 2) =
253 dopanic ? panic : printf;
254 int i, error = 0, e2 __diagused;
255
256 for (i = 0; cfdriverv[i] != NULL; i++) {
257 if ((error = drv_do(cfdriverv[i])) != 0) {
258 pr("configure: `%s' driver %s failed: %d",
259 cfdriverv[i]->cd_name, style, error);
260 goto bad;
261 }
262 }
263
264 KASSERT(error == 0);
265 return 0;
266
267 bad:
268 printf("\n");
269 for (i--; i >= 0; i--) {
270 e2 = drv_undo(cfdriverv[i]);
271 KASSERT(e2 == 0);
272 }
273
274 return error;
275}
276
277typedef int (*cfattach_fn)(const char *, struct cfattach *);
278static int
279frob_cfattachvec(const struct cfattachinit *cfattachv,
280 cfattach_fn att_do, cfattach_fn att_undo,
281 const char *style, bool dopanic)
282{
283 const struct cfattachinit *cfai = NULL;
284 void (*pr)(const char *, ...) __printflike(1, 2) =
285 dopanic ? panic : printf;
286 int j = 0, error = 0, e2 __diagused;
287
288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 if ((error = att_do(cfai->cfai_name,
291 cfai->cfai_list[j])) != 0) {
292 pr("configure: attachment `%s' "
293 "of `%s' driver %s failed: %d",
294 cfai->cfai_list[j]->ca_name,
295 cfai->cfai_name, style, error);
296 goto bad;
297 }
298 }
299 }
300
301 KASSERT(error == 0);
302 return 0;
303
304 bad:
305 /*
306 * Rollback in reverse order. dunno if super-important, but
307 * do that anyway. Although the code looks a little like
308 * someone did a little integration (in the math sense).
309 */
310 printf("\n");
311 if (cfai) {
312 bool last;
313
314 for (last = false; last == false; ) {
315 if (cfai == &cfattachv[0])
316 last = true;
317 for (j--; j >= 0; j--) {
318 e2 = att_undo(cfai->cfai_name,
319 cfai->cfai_list[j]);
320 KASSERT(e2 == 0);
321 }
322 if (!last) {
323 cfai--;
324 for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 ;
326 }
327 }
328 }
329
330 return error;
331}
332
333/*
334 * Initialize the autoconfiguration data structures. Normally this
335 * is done by configure(), but some platforms need to do this very
336 * early (to e.g. initialize the console).
337 */
338void
339config_init(void)
340{
341
342 KASSERT(config_initialized == false);
343
344 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
345
346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 cv_init(&config_misc_cv, "cfgmisc");
348
349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350
351 frob_cfdrivervec(cfdriver_list_initial,
352 config_cfdriver_attach, NULL, "bootstrap", true);
353 frob_cfattachvec(cfattachinit,
354 config_cfattach_attach, NULL, "bootstrap", true);
355
356 initcftable.ct_cfdata = cfdata;
357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358
359 config_initialized = true;
360}
361
362/*
363 * Init or fini drivers and attachments. Either all or none
364 * are processed (via rollback). It would be nice if this were
365 * atomic to outside consumers, but with the current state of
366 * locking ...
367 */
368int
369config_init_component(struct cfdriver * const *cfdriverv,
370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371{
372 int error;
373
374 if ((error = frob_cfdrivervec(cfdriverv,
375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 return error;
377 if ((error = frob_cfattachvec(cfattachv,
378 config_cfattach_attach, config_cfattach_detach,
379 "init", false)) != 0) {
380 frob_cfdrivervec(cfdriverv,
381 config_cfdriver_detach, NULL, "init rollback", true);
382 return error;
383 }
384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 frob_cfattachvec(cfattachv,
386 config_cfattach_detach, NULL, "init rollback", true);
387 frob_cfdrivervec(cfdriverv,
388 config_cfdriver_detach, NULL, "init rollback", true);
389 return error;
390 }
391
392 return 0;
393}
394
395int
396config_fini_component(struct cfdriver * const *cfdriverv,
397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398{
399 int error;
400
401 if ((error = config_cfdata_detach(cfdatav)) != 0)
402 return error;
403 if ((error = frob_cfattachvec(cfattachv,
404 config_cfattach_detach, config_cfattach_attach,
405 "fini", false)) != 0) {
406 if (config_cfdata_attach(cfdatav, 0) != 0)
407 panic("config_cfdata fini rollback failed");
408 return error;
409 }
410 if ((error = frob_cfdrivervec(cfdriverv,
411 config_cfdriver_detach, config_cfdriver_attach,
412 "fini", false)) != 0) {
413 frob_cfattachvec(cfattachv,
414 config_cfattach_attach, NULL, "fini rollback", true);
415 if (config_cfdata_attach(cfdatav, 0) != 0)
416 panic("config_cfdata fini rollback failed");
417 return error;
418 }
419
420 return 0;
421}
422
423void
424config_init_mi(void)
425{
426
427 if (!config_initialized)
428 config_init();
429
430 sysctl_detach_setup(NULL);
431}
432
433void
434config_deferred(device_t dev)
435{
436 config_process_deferred(&deferred_config_queue, dev);
437 config_process_deferred(&interrupt_config_queue, dev);
438 config_process_deferred(&mountroot_config_queue, dev);
439}
440
441static void
442config_interrupts_thread(void *cookie)
443{
444 struct deferred_config *dc;
445
446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
448 (*dc->dc_func)(dc->dc_dev);
449 config_pending_decr(dc->dc_dev);
450 kmem_free(dc, sizeof(*dc));
451 }
452 kthread_exit(0);
453}
454
455void
456config_create_interruptthreads(void)
457{
458 int i;
459
460 for (i = 0; i < interrupt_config_threads; i++) {
461 (void)kthread_create(PRI_NONE, 0, NULL,
462 config_interrupts_thread, NULL, NULL, "configintr");
463 }
464}
465
466static void
467config_mountroot_thread(void *cookie)
468{
469 struct deferred_config *dc;
470
471 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
472 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
473 (*dc->dc_func)(dc->dc_dev);
474 kmem_free(dc, sizeof(*dc));
475 }
476 kthread_exit(0);
477}
478
479void
480config_create_mountrootthreads(void)
481{
482 int i;
483
484 if (!root_is_mounted)
485 root_is_mounted = true;
486
487 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
488 mountroot_config_threads;
489 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
490 KM_NOSLEEP);
491 KASSERT(mountroot_config_lwpids);
492 for (i = 0; i < mountroot_config_threads; i++) {
493 mountroot_config_lwpids[i] = 0;
494 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
495 config_mountroot_thread, NULL,
496 &mountroot_config_lwpids[i],
497 "configroot");
498 }
499}
500
501void
502config_finalize_mountroot(void)
503{
504 int i, error;
505
506 for (i = 0; i < mountroot_config_threads; i++) {
507 if (mountroot_config_lwpids[i] == 0)
508 continue;
509
510 error = kthread_join(mountroot_config_lwpids[i]);
511 if (error)
512 printf("%s: thread %x joined with error %d\n",
513 __func__, i, error);
514 }
515 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
516}
517
518/*
519 * Announce device attach/detach to userland listeners.
520 */
521
522int
523no_devmon_insert(const char *name, prop_dictionary_t p)
524{
525
526 return ENODEV;
527}
528
529static void
530devmon_report_device(device_t dev, bool isattach)
531{
532 prop_dictionary_t ev;
533 const char *parent;
534 const char *what;
535 device_t pdev = device_parent(dev);
536
537 /* If currently no drvctl device, just return */
538 if (devmon_insert_vec == no_devmon_insert)
539 return;
540
541 ev = prop_dictionary_create();
542 if (ev == NULL)
543 return;
544
545 what = (isattach ? "device-attach" : "device-detach");
546 parent = (pdev == NULL ? "root" : device_xname(pdev));
547 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
548 !prop_dictionary_set_cstring(ev, "parent", parent)) {
549 prop_object_release(ev);
550 return;
551 }
552
553 if ((*devmon_insert_vec)(what, ev) != 0)
554 prop_object_release(ev);
555}
556
557/*
558 * Add a cfdriver to the system.
559 */
560int
561config_cfdriver_attach(struct cfdriver *cd)
562{
563 struct cfdriver *lcd;
564
565 /* Make sure this driver isn't already in the system. */
566 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
567 if (STREQ(lcd->cd_name, cd->cd_name))
568 return EEXIST;
569 }
570
571 LIST_INIT(&cd->cd_attach);
572 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
573
574 return 0;
575}
576
577/*
578 * Remove a cfdriver from the system.
579 */
580int
581config_cfdriver_detach(struct cfdriver *cd)
582{
583 struct alldevs_foray af;
584 int i, rc = 0;
585
586 config_alldevs_enter(&af);
587 /* Make sure there are no active instances. */
588 for (i = 0; i < cd->cd_ndevs; i++) {
589 if (cd->cd_devs[i] != NULL) {
590 rc = EBUSY;
591 break;
592 }
593 }
594 config_alldevs_exit(&af);
595
596 if (rc != 0)
597 return rc;
598
599 /* ...and no attachments loaded. */
600 if (LIST_EMPTY(&cd->cd_attach) == 0)
601 return EBUSY;
602
603 LIST_REMOVE(cd, cd_list);
604
605 KASSERT(cd->cd_devs == NULL);
606
607 return 0;
608}
609
610/*
611 * Look up a cfdriver by name.
612 */
613struct cfdriver *
614config_cfdriver_lookup(const char *name)
615{
616 struct cfdriver *cd;
617
618 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
619 if (STREQ(cd->cd_name, name))
620 return cd;
621 }
622
623 return NULL;
624}
625
626/*
627 * Add a cfattach to the specified driver.
628 */
629int
630config_cfattach_attach(const char *driver, struct cfattach *ca)
631{
632 struct cfattach *lca;
633 struct cfdriver *cd;
634
635 cd = config_cfdriver_lookup(driver);
636 if (cd == NULL)
637 return ESRCH;
638
639 /* Make sure this attachment isn't already on this driver. */
640 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
641 if (STREQ(lca->ca_name, ca->ca_name))
642 return EEXIST;
643 }
644
645 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
646
647 return 0;
648}
649
650/*
651 * Remove a cfattach from the specified driver.
652 */
653int
654config_cfattach_detach(const char *driver, struct cfattach *ca)
655{
656 struct alldevs_foray af;
657 struct cfdriver *cd;
658 device_t dev;
659 int i, rc = 0;
660
661 cd = config_cfdriver_lookup(driver);
662 if (cd == NULL)
663 return ESRCH;
664
665 config_alldevs_enter(&af);
666 /* Make sure there are no active instances. */
667 for (i = 0; i < cd->cd_ndevs; i++) {
668 if ((dev = cd->cd_devs[i]) == NULL)
669 continue;
670 if (dev->dv_cfattach == ca) {
671 rc = EBUSY;
672 break;
673 }
674 }
675 config_alldevs_exit(&af);
676
677 if (rc != 0)
678 return rc;
679
680 LIST_REMOVE(ca, ca_list);
681
682 return 0;
683}
684
685/*
686 * Look up a cfattach by name.
687 */
688static struct cfattach *
689config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
690{
691 struct cfattach *ca;
692
693 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
694 if (STREQ(ca->ca_name, atname))
695 return ca;
696 }
697
698 return NULL;
699}
700
701/*
702 * Look up a cfattach by driver/attachment name.
703 */
704struct cfattach *
705config_cfattach_lookup(const char *name, const char *atname)
706{
707 struct cfdriver *cd;
708
709 cd = config_cfdriver_lookup(name);
710 if (cd == NULL)
711 return NULL;
712
713 return config_cfattach_lookup_cd(cd, atname);
714}
715
716/*
717 * Apply the matching function and choose the best. This is used
718 * a few times and we want to keep the code small.
719 */
720static void
721mapply(struct matchinfo *m, cfdata_t cf)
722{
723 int pri;
724
725 if (m->fn != NULL) {
726 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
727 } else {
728 pri = config_match(m->parent, cf, m->aux);
729 }
730 if (pri > m->pri) {
731 m->match = cf;
732 m->pri = pri;
733 }
734}
735
736int
737config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
738{
739 const struct cfiattrdata *ci;
740 const struct cflocdesc *cl;
741 int nlocs, i;
742
743 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
744 KASSERT(ci);
745 nlocs = ci->ci_loclen;
746 KASSERT(!nlocs || locs);
747 for (i = 0; i < nlocs; i++) {
748 cl = &ci->ci_locdesc[i];
749 if (cl->cld_defaultstr != NULL &&
750 cf->cf_loc[i] == cl->cld_default)
751 continue;
752 if (cf->cf_loc[i] == locs[i])
753 continue;
754 return 0;
755 }
756
757 return config_match(parent, cf, aux);
758}
759
760/*
761 * Helper function: check whether the driver supports the interface attribute
762 * and return its descriptor structure.
763 */
764static const struct cfiattrdata *
765cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
766{
767 const struct cfiattrdata * const *cpp;
768
769 if (cd->cd_attrs == NULL)
770 return 0;
771
772 for (cpp = cd->cd_attrs; *cpp; cpp++) {
773 if (STREQ((*cpp)->ci_name, ia)) {
774 /* Match. */
775 return *cpp;
776 }
777 }
778 return 0;
779}
780
781/*
782 * Lookup an interface attribute description by name.
783 * If the driver is given, consider only its supported attributes.
784 */
785const struct cfiattrdata *
786cfiattr_lookup(const char *name, const struct cfdriver *cd)
787{
788 const struct cfdriver *d;
789 const struct cfiattrdata *ia;
790
791 if (cd)
792 return cfdriver_get_iattr(cd, name);
793
794 LIST_FOREACH(d, &allcfdrivers, cd_list) {
795 ia = cfdriver_get_iattr(d, name);
796 if (ia)
797 return ia;
798 }
799 return 0;
800}
801
802/*
803 * Determine if `parent' is a potential parent for a device spec based
804 * on `cfp'.
805 */
806static int
807cfparent_match(const device_t parent, const struct cfparent *cfp)
808{
809 struct cfdriver *pcd;
810
811 /* We don't match root nodes here. */
812 if (cfp == NULL)
813 return 0;
814
815 pcd = parent->dv_cfdriver;
816 KASSERT(pcd != NULL);
817
818 /*
819 * First, ensure this parent has the correct interface
820 * attribute.
821 */
822 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
823 return 0;
824
825 /*
826 * If no specific parent device instance was specified (i.e.
827 * we're attaching to the attribute only), we're done!
828 */
829 if (cfp->cfp_parent == NULL)
830 return 1;
831
832 /*
833 * Check the parent device's name.
834 */
835 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
836 return 0; /* not the same parent */
837
838 /*
839 * Make sure the unit number matches.
840 */
841 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
842 cfp->cfp_unit == parent->dv_unit)
843 return 1;
844
845 /* Unit numbers don't match. */
846 return 0;
847}
848
849/*
850 * Helper for config_cfdata_attach(): check all devices whether it could be
851 * parent any attachment in the config data table passed, and rescan.
852 */
853static void
854rescan_with_cfdata(const struct cfdata *cf)
855{
856 device_t d;
857 const struct cfdata *cf1;
858 deviter_t di;
859
860
861 /*
862 * "alldevs" is likely longer than a modules's cfdata, so make it
863 * the outer loop.
864 */
865 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
866
867 if (!(d->dv_cfattach->ca_rescan))
868 continue;
869
870 for (cf1 = cf; cf1->cf_name; cf1++) {
871
872 if (!cfparent_match(d, cf1->cf_pspec))
873 continue;
874
875 (*d->dv_cfattach->ca_rescan)(d,
876 cfdata_ifattr(cf1), cf1->cf_loc);
877
878 config_deferred(d);
879 }
880 }
881 deviter_release(&di);
882}
883
884/*
885 * Attach a supplemental config data table and rescan potential
886 * parent devices if required.
887 */
888int
889config_cfdata_attach(cfdata_t cf, int scannow)
890{
891 struct cftable *ct;
892
893 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
894 ct->ct_cfdata = cf;
895 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
896
897 if (scannow)
898 rescan_with_cfdata(cf);
899
900 return 0;
901}
902
903/*
904 * Helper for config_cfdata_detach: check whether a device is
905 * found through any attachment in the config data table.
906 */
907static int
908dev_in_cfdata(device_t d, cfdata_t cf)
909{
910 const struct cfdata *cf1;
911
912 for (cf1 = cf; cf1->cf_name; cf1++)
913 if (d->dv_cfdata == cf1)
914 return 1;
915
916 return 0;
917}
918
919/*
920 * Detach a supplemental config data table. Detach all devices found
921 * through that table (and thus keeping references to it) before.
922 */
923int
924config_cfdata_detach(cfdata_t cf)
925{
926 device_t d;
927 int error = 0;
928 struct cftable *ct;
929 deviter_t di;
930
931 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
932 d = deviter_next(&di)) {
933 if (!dev_in_cfdata(d, cf))
934 continue;
935 if ((error = config_detach(d, 0)) != 0)
936 break;
937 }
938 deviter_release(&di);
939 if (error) {
940 aprint_error_dev(d, "unable to detach instance\n");
941 return error;
942 }
943
944 TAILQ_FOREACH(ct, &allcftables, ct_list) {
945 if (ct->ct_cfdata == cf) {
946 TAILQ_REMOVE(&allcftables, ct, ct_list);
947 kmem_free(ct, sizeof(*ct));
948 return 0;
949 }
950 }
951
952 /* not found -- shouldn't happen */
953 return EINVAL;
954}
955
956/*
957 * Invoke the "match" routine for a cfdata entry on behalf of
958 * an external caller, usually a "submatch" routine.
959 */
960int
961config_match(device_t parent, cfdata_t cf, void *aux)
962{
963 struct cfattach *ca;
964
965 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
966 if (ca == NULL) {
967 /* No attachment for this entry, oh well. */
968 return 0;
969 }
970
971 return (*ca->ca_match)(parent, cf, aux);
972}
973
974/*
975 * Iterate over all potential children of some device, calling the given
976 * function (default being the child's match function) for each one.
977 * Nonzero returns are matches; the highest value returned is considered
978 * the best match. Return the `found child' if we got a match, or NULL
979 * otherwise. The `aux' pointer is simply passed on through.
980 *
981 * Note that this function is designed so that it can be used to apply
982 * an arbitrary function to all potential children (its return value
983 * can be ignored).
984 */
985cfdata_t
986config_search_loc(cfsubmatch_t fn, device_t parent,
987 const char *ifattr, const int *locs, void *aux)
988{
989 struct cftable *ct;
990 cfdata_t cf;
991 struct matchinfo m;
992
993 KASSERT(config_initialized);
994 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
995
996 m.fn = fn;
997 m.parent = parent;
998 m.locs = locs;
999 m.aux = aux;
1000 m.match = NULL;
1001 m.pri = 0;
1002
1003 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1004 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1005
1006 /* We don't match root nodes here. */
1007 if (!cf->cf_pspec)
1008 continue;
1009
1010 /*
1011 * Skip cf if no longer eligible, otherwise scan
1012 * through parents for one matching `parent', and
1013 * try match function.
1014 */
1015 if (cf->cf_fstate == FSTATE_FOUND)
1016 continue;
1017 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1018 cf->cf_fstate == FSTATE_DSTAR)
1019 continue;
1020
1021 /*
1022 * If an interface attribute was specified,
1023 * consider only children which attach to
1024 * that attribute.
1025 */
1026 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1027 continue;
1028
1029 if (cfparent_match(parent, cf->cf_pspec))
1030 mapply(&m, cf);
1031 }
1032 }
1033 return m.match;
1034}
1035
1036cfdata_t
1037config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1038 void *aux)
1039{
1040
1041 return config_search_loc(fn, parent, ifattr, NULL, aux);
1042}
1043
1044/*
1045 * Find the given root device.
1046 * This is much like config_search, but there is no parent.
1047 * Don't bother with multiple cfdata tables; the root node
1048 * must always be in the initial table.
1049 */
1050cfdata_t
1051config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1052{
1053 cfdata_t cf;
1054 const short *p;
1055 struct matchinfo m;
1056
1057 m.fn = fn;
1058 m.parent = ROOT;
1059 m.aux = aux;
1060 m.match = NULL;
1061 m.pri = 0;
1062 m.locs = 0;
1063 /*
1064 * Look at root entries for matching name. We do not bother
1065 * with found-state here since only one root should ever be
1066 * searched (and it must be done first).
1067 */
1068 for (p = cfroots; *p >= 0; p++) {
1069 cf = &cfdata[*p];
1070 if (strcmp(cf->cf_name, rootname) == 0)
1071 mapply(&m, cf);
1072 }
1073 return m.match;
1074}
1075
1076static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1077
1078/*
1079 * The given `aux' argument describes a device that has been found
1080 * on the given parent, but not necessarily configured. Locate the
1081 * configuration data for that device (using the submatch function
1082 * provided, or using candidates' cd_match configuration driver
1083 * functions) and attach it, and return its device_t. If the device was
1084 * not configured, call the given `print' function and return NULL.
1085 */
1086device_t
1087config_found_sm_loc(device_t parent,
1088 const char *ifattr, const int *locs, void *aux,
1089 cfprint_t print, cfsubmatch_t submatch)
1090{
1091 cfdata_t cf;
1092
1093 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1094 return(config_attach_loc(parent, cf, locs, aux, print));
1095 if (print) {
1096 if (config_do_twiddle && cold)
1097 twiddle();
1098 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1099 }
1100
1101 /*
1102 * This has the effect of mixing in a single timestamp to the
1103 * entropy pool. Experiments indicate the estimator will almost
1104 * always attribute one bit of entropy to this sample; analysis
1105 * of device attach/detach timestamps on FreeBSD indicates 4
1106 * bits of entropy/sample so this seems appropriately conservative.
1107 */
1108 rnd_add_uint32(&rnd_autoconf_source, 0);
1109 return NULL;
1110}
1111
1112device_t
1113config_found_ia(device_t parent, const char *ifattr, void *aux,
1114 cfprint_t print)
1115{
1116
1117 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1118}
1119
1120device_t
1121config_found(device_t parent, void *aux, cfprint_t print)
1122{
1123
1124 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1125}
1126
1127/*
1128 * As above, but for root devices.
1129 */
1130device_t
1131config_rootfound(const char *rootname, void *aux)
1132{
1133 cfdata_t cf;
1134
1135 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1136 return config_attach(ROOT, cf, aux, NULL);
1137 aprint_error("root device %s not configured\n", rootname);
1138 return NULL;
1139}
1140
1141/* just like sprintf(buf, "%d") except that it works from the end */
1142static char *
1143number(char *ep, int n)
1144{
1145
1146 *--ep = 0;
1147 while (n >= 10) {
1148 *--ep = (n % 10) + '0';
1149 n /= 10;
1150 }
1151 *--ep = n + '0';
1152 return ep;
1153}
1154
1155/*
1156 * Expand the size of the cd_devs array if necessary.
1157 *
1158 * The caller must hold alldevs_mtx. config_makeroom() may release and
1159 * re-acquire alldevs_mtx, so callers should re-check conditions such
1160 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1161 * returns.
1162 */
1163static void
1164config_makeroom(int n, struct cfdriver *cd)
1165{
1166 int ondevs, nndevs;
1167 device_t *osp, *nsp;
1168
1169 alldevs_nwrite++;
1170
1171 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1172 ;
1173
1174 while (n >= cd->cd_ndevs) {
1175 /*
1176 * Need to expand the array.
1177 */
1178 ondevs = cd->cd_ndevs;
1179 osp = cd->cd_devs;
1180
1181 /* Release alldevs_mtx around allocation, which may
1182 * sleep.
1183 */
1184 mutex_exit(&alldevs_mtx);
1185 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1186 if (nsp == NULL)
1187 panic("%s: could not expand cd_devs", __func__);
1188 mutex_enter(&alldevs_mtx);
1189
1190 /* If another thread moved the array while we did
1191 * not hold alldevs_mtx, try again.
1192 */
1193 if (cd->cd_devs != osp) {
1194 mutex_exit(&alldevs_mtx);
1195 kmem_free(nsp, sizeof(device_t[nndevs]));
1196 mutex_enter(&alldevs_mtx);
1197 continue;
1198 }
1199
1200 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1201 if (ondevs != 0)
1202 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1203
1204 cd->cd_ndevs = nndevs;
1205 cd->cd_devs = nsp;
1206 if (ondevs != 0) {
1207 mutex_exit(&alldevs_mtx);
1208 kmem_free(osp, sizeof(device_t[ondevs]));
1209 mutex_enter(&alldevs_mtx);
1210 }
1211 }
1212 alldevs_nwrite--;
1213}
1214
1215/*
1216 * Put dev into the devices list.
1217 */
1218static void
1219config_devlink(device_t dev)
1220{
1221
1222 mutex_enter(&alldevs_mtx);
1223
1224 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1225
1226 dev->dv_add_gen = alldevs_gen;
1227 /* It is safe to add a device to the tail of the list while
1228 * readers and writers are in the list.
1229 */
1230 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1231 mutex_exit(&alldevs_mtx);
1232}
1233
1234static void
1235config_devfree(device_t dev)
1236{
1237 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1238
1239 if (dev->dv_cfattach->ca_devsize > 0)
1240 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1241 if (priv)
1242 kmem_free(dev, sizeof(*dev));
1243}
1244
1245/*
1246 * Caller must hold alldevs_mtx.
1247 */
1248static void
1249config_devunlink(device_t dev, struct devicelist *garbage)
1250{
1251 struct device_garbage *dg = &dev->dv_garbage;
1252 cfdriver_t cd = device_cfdriver(dev);
1253 int i;
1254
1255 KASSERT(mutex_owned(&alldevs_mtx));
1256
1257 /* Unlink from device list. Link to garbage list. */
1258 TAILQ_REMOVE(&alldevs, dev, dv_list);
1259 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1260
1261 /* Remove from cfdriver's array. */
1262 cd->cd_devs[dev->dv_unit] = NULL;
1263
1264 /*
1265 * If the device now has no units in use, unlink its softc array.
1266 */
1267 for (i = 0; i < cd->cd_ndevs; i++) {
1268 if (cd->cd_devs[i] != NULL)
1269 break;
1270 }
1271 /* Nothing found. Unlink, now. Deallocate, later. */
1272 if (i == cd->cd_ndevs) {
1273 dg->dg_ndevs = cd->cd_ndevs;
1274 dg->dg_devs = cd->cd_devs;
1275 cd->cd_devs = NULL;
1276 cd->cd_ndevs = 0;
1277 }
1278}
1279
1280static void
1281config_devdelete(device_t dev)
1282{
1283 struct device_garbage *dg = &dev->dv_garbage;
1284 device_lock_t dvl = device_getlock(dev);
1285
1286 if (dg->dg_devs != NULL)
1287 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1288
1289 cv_destroy(&dvl->dvl_cv);
1290 mutex_destroy(&dvl->dvl_mtx);
1291
1292 KASSERT(dev->dv_properties != NULL);
1293 prop_object_release(dev->dv_properties);
1294
1295 if (dev->dv_activity_handlers)
1296 panic("%s with registered handlers", __func__);
1297
1298 if (dev->dv_locators) {
1299 size_t amount = *--dev->dv_locators;
1300 kmem_free(dev->dv_locators, amount);
1301 }
1302
1303 config_devfree(dev);
1304}
1305
1306static int
1307config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1308{
1309 int unit;
1310
1311 if (cf->cf_fstate == FSTATE_STAR) {
1312 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1313 if (cd->cd_devs[unit] == NULL)
1314 break;
1315 /*
1316 * unit is now the unit of the first NULL device pointer,
1317 * or max(cd->cd_ndevs,cf->cf_unit).
1318 */
1319 } else {
1320 unit = cf->cf_unit;
1321 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1322 unit = -1;
1323 }
1324 return unit;
1325}
1326
1327static int
1328config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1329{
1330 struct alldevs_foray af;
1331 int unit;
1332
1333 config_alldevs_enter(&af);
1334 for (;;) {
1335 unit = config_unit_nextfree(cd, cf);
1336 if (unit == -1)
1337 break;
1338 if (unit < cd->cd_ndevs) {
1339 cd->cd_devs[unit] = dev;
1340 dev->dv_unit = unit;
1341 break;
1342 }
1343 config_makeroom(unit, cd);
1344 }
1345 config_alldevs_exit(&af);
1346
1347 return unit;
1348}
1349
1350static device_t
1351config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1352{
1353 cfdriver_t cd;
1354 cfattach_t ca;
1355 size_t lname, lunit;
1356 const char *xunit;
1357 int myunit;
1358 char num[10];
1359 device_t dev;
1360 void *dev_private;
1361 const struct cfiattrdata *ia;
1362 device_lock_t dvl;
1363
1364 cd = config_cfdriver_lookup(cf->cf_name);
1365 if (cd == NULL)
1366 return NULL;
1367
1368 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1369 if (ca == NULL)
1370 return NULL;
1371
1372 /* get memory for all device vars */
1373 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1374 || ca->ca_devsize >= sizeof(struct device),
1375 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1376 sizeof(struct device));
1377 if (ca->ca_devsize > 0) {
1378 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1379 if (dev_private == NULL)
1380 panic("config_devalloc: memory allocation for device "
1381 "softc failed");
1382 } else {
1383 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1384 dev_private = NULL;
1385 }
1386
1387 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1388 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1389 } else {
1390 dev = dev_private;
1391#ifdef DIAGNOSTIC
1392 printf("%s has not been converted to device_t\n", cd->cd_name);
1393#endif
1394 }
1395 if (dev == NULL)
1396 panic("config_devalloc: memory allocation for device_t failed");
1397
1398 dev->dv_class = cd->cd_class;
1399 dev->dv_cfdata = cf;
1400 dev->dv_cfdriver = cd;
1401 dev->dv_cfattach = ca;
1402 dev->dv_activity_count = 0;
1403 dev->dv_activity_handlers = NULL;
1404 dev->dv_private = dev_private;
1405 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1406
1407 myunit = config_unit_alloc(dev, cd, cf);
1408 if (myunit == -1) {
1409 config_devfree(dev);
1410 return NULL;
1411 }
1412
1413 /* compute length of name and decimal expansion of unit number */
1414 lname = strlen(cd->cd_name);
1415 xunit = number(&num[sizeof(num)], myunit);
1416 lunit = &num[sizeof(num)] - xunit;
1417 if (lname + lunit > sizeof(dev->dv_xname))
1418 panic("config_devalloc: device name too long");
1419
1420 dvl = device_getlock(dev);
1421
1422 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1423 cv_init(&dvl->dvl_cv, "pmfsusp");
1424
1425 memcpy(dev->dv_xname, cd->cd_name, lname);
1426 memcpy(dev->dv_xname + lname, xunit, lunit);
1427 dev->dv_parent = parent;
1428 if (parent != NULL)
1429 dev->dv_depth = parent->dv_depth + 1;
1430 else
1431 dev->dv_depth = 0;
1432 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1433 if (locs) {
1434 KASSERT(parent); /* no locators at root */
1435 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1436 dev->dv_locators =
1437 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1438 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1439 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1440 }
1441 dev->dv_properties = prop_dictionary_create();
1442 KASSERT(dev->dv_properties != NULL);
1443
1444 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1445 "device-driver", dev->dv_cfdriver->cd_name);
1446 prop_dictionary_set_uint16(dev->dv_properties,
1447 "device-unit", dev->dv_unit);
1448 if (parent != NULL) {
1449 prop_dictionary_set_cstring(dev->dv_properties,
1450 "device-parent", device_xname(parent));
1451 }
1452
1453 if (dev->dv_cfdriver->cd_attrs != NULL)
1454 config_add_attrib_dict(dev);
1455
1456 return dev;
1457}
1458
1459/*
1460 * Create an array of device attach attributes and add it
1461 * to the device's dv_properties dictionary.
1462 *
1463 * <key>interface-attributes</key>
1464 * <array>
1465 * <dict>
1466 * <key>attribute-name</key>
1467 * <string>foo</string>
1468 * <key>locators</key>
1469 * <array>
1470 * <dict>
1471 * <key>loc-name</key>
1472 * <string>foo-loc1</string>
1473 * </dict>
1474 * <dict>
1475 * <key>loc-name</key>
1476 * <string>foo-loc2</string>
1477 * <key>default</key>
1478 * <string>foo-loc2-default</string>
1479 * </dict>
1480 * ...
1481 * </array>
1482 * </dict>
1483 * ...
1484 * </array>
1485 */
1486
1487static void
1488config_add_attrib_dict(device_t dev)
1489{
1490 int i, j;
1491 const struct cfiattrdata *ci;
1492 prop_dictionary_t attr_dict, loc_dict;
1493 prop_array_t attr_array, loc_array;
1494
1495 if ((attr_array = prop_array_create()) == NULL)
1496 return;
1497
1498 for (i = 0; ; i++) {
1499 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1500 break;
1501 if ((attr_dict = prop_dictionary_create()) == NULL)
1502 break;
1503 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1504 ci->ci_name);
1505
1506 /* Create an array of the locator names and defaults */
1507
1508 if (ci->ci_loclen != 0 &&
1509 (loc_array = prop_array_create()) != NULL) {
1510 for (j = 0; j < ci->ci_loclen; j++) {
1511 loc_dict = prop_dictionary_create();
1512 if (loc_dict == NULL)
1513 continue;
1514 prop_dictionary_set_cstring_nocopy(loc_dict,
1515 "loc-name", ci->ci_locdesc[j].cld_name);
1516 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1517 prop_dictionary_set_cstring_nocopy(
1518 loc_dict, "default",
1519 ci->ci_locdesc[j].cld_defaultstr);
1520 prop_array_set(loc_array, j, loc_dict);
1521 prop_object_release(loc_dict);
1522 }
1523 prop_dictionary_set_and_rel(attr_dict, "locators",
1524 loc_array);
1525 }
1526 prop_array_add(attr_array, attr_dict);
1527 prop_object_release(attr_dict);
1528 }
1529 if (i == 0)
1530 prop_object_release(attr_array);
1531 else
1532 prop_dictionary_set_and_rel(dev->dv_properties,
1533 "interface-attributes", attr_array);
1534
1535 return;
1536}
1537
1538/*
1539 * Attach a found device.
1540 */
1541device_t
1542config_attach_loc(device_t parent, cfdata_t cf,
1543 const int *locs, void *aux, cfprint_t print)
1544{
1545 device_t dev;
1546 struct cftable *ct;
1547 const char *drvname;
1548
1549 dev = config_devalloc(parent, cf, locs);
1550 if (!dev)
1551 panic("config_attach: allocation of device softc failed");
1552
1553 /* XXX redundant - see below? */
1554 if (cf->cf_fstate != FSTATE_STAR) {
1555 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1556 cf->cf_fstate = FSTATE_FOUND;
1557 }
1558
1559 config_devlink(dev);
1560
1561 if (config_do_twiddle && cold)
1562 twiddle();
1563 else
1564 aprint_naive("Found ");
1565 /*
1566 * We want the next two printfs for normal, verbose, and quiet,
1567 * but not silent (in which case, we're twiddling, instead).
1568 */
1569 if (parent == ROOT) {
1570 aprint_naive("%s (root)", device_xname(dev));
1571 aprint_normal("%s (root)", device_xname(dev));
1572 } else {
1573 aprint_naive("%s at %s", device_xname(dev),
1574 device_xname(parent));
1575 aprint_normal("%s at %s", device_xname(dev),
1576 device_xname(parent));
1577 if (print)
1578 (void) (*print)(aux, NULL);
1579 }
1580
1581 /*
1582 * Before attaching, clobber any unfound devices that are
1583 * otherwise identical.
1584 * XXX code above is redundant?
1585 */
1586 drvname = dev->dv_cfdriver->cd_name;
1587 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1588 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1589 if (STREQ(cf->cf_name, drvname) &&
1590 cf->cf_unit == dev->dv_unit) {
1591 if (cf->cf_fstate == FSTATE_NOTFOUND)
1592 cf->cf_fstate = FSTATE_FOUND;
1593 }
1594 }
1595 }
1596 device_register(dev, aux);
1597
1598 /* Let userland know */
1599 devmon_report_device(dev, true);
1600
1601 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1602
1603 if (!device_pmf_is_registered(dev))
1604 aprint_debug_dev(dev, "WARNING: power management not "
1605 "supported\n");
1606
1607 config_process_deferred(&deferred_config_queue, dev);
1608
1609 device_register_post_config(dev, aux);
1610 return dev;
1611}
1612
1613device_t
1614config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1615{
1616
1617 return config_attach_loc(parent, cf, NULL, aux, print);
1618}
1619
1620/*
1621 * As above, but for pseudo-devices. Pseudo-devices attached in this
1622 * way are silently inserted into the device tree, and their children
1623 * attached.
1624 *
1625 * Note that because pseudo-devices are attached silently, any information
1626 * the attach routine wishes to print should be prefixed with the device
1627 * name by the attach routine.
1628 */
1629device_t
1630config_attach_pseudo(cfdata_t cf)
1631{
1632 device_t dev;
1633
1634 dev = config_devalloc(ROOT, cf, NULL);
1635 if (!dev)
1636 return NULL;
1637
1638 /* XXX mark busy in cfdata */
1639
1640 if (cf->cf_fstate != FSTATE_STAR) {
1641 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1642 cf->cf_fstate = FSTATE_FOUND;
1643 }
1644
1645 config_devlink(dev);
1646
1647#if 0 /* XXXJRT not yet */
1648 device_register(dev, NULL); /* like a root node */
1649#endif
1650
1651 /* Let userland know */
1652 devmon_report_device(dev, true);
1653
1654 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1655
1656 config_process_deferred(&deferred_config_queue, dev);
1657 return dev;
1658}
1659
1660/*
1661 * Caller must hold alldevs_mtx.
1662 */
1663static void
1664config_collect_garbage(struct devicelist *garbage)
1665{
1666 device_t dv;
1667
1668 KASSERT(!cpu_intr_p());
1669 KASSERT(!cpu_softintr_p());
1670 KASSERT(mutex_owned(&alldevs_mtx));
1671
1672 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1673 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1674 if (dv->dv_del_gen != 0)
1675 break;
1676 }
1677 if (dv == NULL) {
1678 alldevs_garbage = false;
1679 break;
1680 }
1681 config_devunlink(dv, garbage);
1682 }
1683 KASSERT(mutex_owned(&alldevs_mtx));
1684}
1685
1686static void
1687config_dump_garbage(struct devicelist *garbage)
1688{
1689 device_t dv;
1690
1691 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1692 TAILQ_REMOVE(garbage, dv, dv_list);
1693 config_devdelete(dv);
1694 }
1695}
1696
1697/*
1698 * Detach a device. Optionally forced (e.g. because of hardware
1699 * removal) and quiet. Returns zero if successful, non-zero
1700 * (an error code) otherwise.
1701 *
1702 * Note that this code wants to be run from a process context, so
1703 * that the detach can sleep to allow processes which have a device
1704 * open to run and unwind their stacks.
1705 */
1706int
1707config_detach(device_t dev, int flags)
1708{
1709 struct alldevs_foray af;
1710 struct cftable *ct;
1711 cfdata_t cf;
1712 const struct cfattach *ca;
1713 struct cfdriver *cd;
1714#ifdef DIAGNOSTIC
1715 device_t d;
1716#endif
1717 int rv = 0;
1718
1719#ifdef DIAGNOSTIC
1720 cf = dev->dv_cfdata;
1721 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1722 cf->cf_fstate != FSTATE_STAR)
1723 panic("config_detach: %s: bad device fstate %d",
1724 device_xname(dev), cf ? cf->cf_fstate : -1);
1725#endif
1726 cd = dev->dv_cfdriver;
1727 KASSERT(cd != NULL);
1728
1729 ca = dev->dv_cfattach;
1730 KASSERT(ca != NULL);
1731
1732 mutex_enter(&alldevs_mtx);
1733 if (dev->dv_del_gen != 0) {
1734 mutex_exit(&alldevs_mtx);
1735#ifdef DIAGNOSTIC
1736 printf("%s: %s is already detached\n", __func__,
1737 device_xname(dev));
1738#endif /* DIAGNOSTIC */
1739 return ENOENT;
1740 }
1741 alldevs_nwrite++;
1742 mutex_exit(&alldevs_mtx);
1743
1744 if (!detachall &&
1745 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1746 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1747 rv = EOPNOTSUPP;
1748 } else if (ca->ca_detach != NULL) {
1749 rv = (*ca->ca_detach)(dev, flags);
1750 } else
1751 rv = EOPNOTSUPP;
1752
1753 /*
1754 * If it was not possible to detach the device, then we either
1755 * panic() (for the forced but failed case), or return an error.
1756 *
1757 * If it was possible to detach the device, ensure that the
1758 * device is deactivated.
1759 */
1760 if (rv == 0)
1761 dev->dv_flags &= ~DVF_ACTIVE;
1762 else if ((flags & DETACH_FORCE) == 0)
1763 goto out;
1764 else {
1765 panic("config_detach: forced detach of %s failed (%d)",
1766 device_xname(dev), rv);
1767 }
1768
1769 /*
1770 * The device has now been successfully detached.
1771 */
1772
1773 /* Let userland know */
1774 devmon_report_device(dev, false);
1775
1776#ifdef DIAGNOSTIC
1777 /*
1778 * Sanity: If you're successfully detached, you should have no
1779 * children. (Note that because children must be attached
1780 * after parents, we only need to search the latter part of
1781 * the list.)
1782 */
1783 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1784 d = TAILQ_NEXT(d, dv_list)) {
1785 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1786 printf("config_detach: detached device %s"
1787 " has children %s\n", device_xname(dev),
1788 device_xname(d));
1789 panic("config_detach");
1790 }
1791 }
1792#endif
1793
1794 /* notify the parent that the child is gone */
1795 if (dev->dv_parent) {
1796 device_t p = dev->dv_parent;
1797 if (p->dv_cfattach->ca_childdetached)
1798 (*p->dv_cfattach->ca_childdetached)(p, dev);
1799 }
1800
1801 /*
1802 * Mark cfdata to show that the unit can be reused, if possible.
1803 */
1804 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1805 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1806 if (STREQ(cf->cf_name, cd->cd_name)) {
1807 if (cf->cf_fstate == FSTATE_FOUND &&
1808 cf->cf_unit == dev->dv_unit)
1809 cf->cf_fstate = FSTATE_NOTFOUND;
1810 }
1811 }
1812 }
1813
1814 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1815 aprint_normal_dev(dev, "detached\n");
1816
1817out:
1818 config_alldevs_enter(&af);
1819 KASSERT(alldevs_nwrite != 0);
1820 --alldevs_nwrite;
1821 if (rv == 0 && dev->dv_del_gen == 0) {
1822 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1823 config_devunlink(dev, &af.af_garbage);
1824 else {
1825 dev->dv_del_gen = alldevs_gen;
1826 alldevs_garbage = true;
1827 }
1828 }
1829 config_alldevs_exit(&af);
1830
1831 return rv;
1832}
1833
1834int
1835config_detach_children(device_t parent, int flags)
1836{
1837 device_t dv;
1838 deviter_t di;
1839 int error = 0;
1840
1841 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1842 dv = deviter_next(&di)) {
1843 if (device_parent(dv) != parent)
1844 continue;
1845 if ((error = config_detach(dv, flags)) != 0)
1846 break;
1847 }
1848 deviter_release(&di);
1849 return error;
1850}
1851
1852device_t
1853shutdown_first(struct shutdown_state *s)
1854{
1855 if (!s->initialized) {
1856 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1857 s->initialized = true;
1858 }
1859 return shutdown_next(s);
1860}
1861
1862device_t
1863shutdown_next(struct shutdown_state *s)
1864{
1865 device_t dv;
1866
1867 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1868 ;
1869
1870 if (dv == NULL)
1871 s->initialized = false;
1872
1873 return dv;
1874}
1875
1876bool
1877config_detach_all(int how)
1878{
1879 static struct shutdown_state s;
1880 device_t curdev;
1881 bool progress = false;
1882 int flags;
1883
1884 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1885 return false;
1886
1887 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1888 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1889 else
1890 flags = DETACH_SHUTDOWN;
1891
1892 for (curdev = shutdown_first(&s); curdev != NULL;
1893 curdev = shutdown_next(&s)) {
1894 aprint_debug(" detaching %s, ", device_xname(curdev));
1895 if (config_detach(curdev, flags) == 0) {
1896 progress = true;
1897 aprint_debug("success.");
1898 } else
1899 aprint_debug("failed.");
1900 }
1901 return progress;
1902}
1903
1904static bool
1905device_is_ancestor_of(device_t ancestor, device_t descendant)
1906{
1907 device_t dv;
1908
1909 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1910 if (device_parent(dv) == ancestor)
1911 return true;
1912 }
1913 return false;
1914}
1915
1916int
1917config_deactivate(device_t dev)
1918{
1919 deviter_t di;
1920 const struct cfattach *ca;
1921 device_t descendant;
1922 int s, rv = 0, oflags;
1923
1924 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1925 descendant != NULL;
1926 descendant = deviter_next(&di)) {
1927 if (dev != descendant &&
1928 !device_is_ancestor_of(dev, descendant))
1929 continue;
1930
1931 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1932 continue;
1933
1934 ca = descendant->dv_cfattach;
1935 oflags = descendant->dv_flags;
1936
1937 descendant->dv_flags &= ~DVF_ACTIVE;
1938 if (ca->ca_activate == NULL)
1939 continue;
1940 s = splhigh();
1941 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1942 splx(s);
1943 if (rv != 0)
1944 descendant->dv_flags = oflags;
1945 }
1946 deviter_release(&di);
1947 return rv;
1948}
1949
1950/*
1951 * Defer the configuration of the specified device until all
1952 * of its parent's devices have been attached.
1953 */
1954void
1955config_defer(device_t dev, void (*func)(device_t))
1956{
1957 struct deferred_config *dc;
1958
1959 if (dev->dv_parent == NULL)
1960 panic("config_defer: can't defer config of a root device");
1961
1962#ifdef DIAGNOSTIC
1963 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1964 if (dc->dc_dev == dev)
1965 panic("config_defer: deferred twice");
1966 }
1967#endif
1968
1969 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1970 if (dc == NULL)
1971 panic("config_defer: unable to allocate callback");
1972
1973 dc->dc_dev = dev;
1974 dc->dc_func = func;
1975 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1976 config_pending_incr(dev);
1977}
1978
1979/*
1980 * Defer some autoconfiguration for a device until after interrupts
1981 * are enabled.
1982 */
1983void
1984config_interrupts(device_t dev, void (*func)(device_t))
1985{
1986 struct deferred_config *dc;
1987
1988 /*
1989 * If interrupts are enabled, callback now.
1990 */
1991 if (cold == 0) {
1992 (*func)(dev);
1993 return;
1994 }
1995
1996#ifdef DIAGNOSTIC
1997 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1998 if (dc->dc_dev == dev)
1999 panic("config_interrupts: deferred twice");
2000 }
2001#endif
2002
2003 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2004 if (dc == NULL)
2005 panic("config_interrupts: unable to allocate callback");
2006
2007 dc->dc_dev = dev;
2008 dc->dc_func = func;
2009 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2010 config_pending_incr(dev);
2011}
2012
2013/*
2014 * Defer some autoconfiguration for a device until after root file system
2015 * is mounted (to load firmware etc).
2016 */
2017void
2018config_mountroot(device_t dev, void (*func)(device_t))
2019{
2020 struct deferred_config *dc;
2021
2022 /*
2023 * If root file system is mounted, callback now.
2024 */
2025 if (root_is_mounted) {
2026 (*func)(dev);
2027 return;
2028 }
2029
2030#ifdef DIAGNOSTIC
2031 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2032 if (dc->dc_dev == dev)
2033 panic("%s: deferred twice", __func__);
2034 }
2035#endif
2036
2037 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2038 if (dc == NULL)
2039 panic("%s: unable to allocate callback", __func__);
2040
2041 dc->dc_dev = dev;
2042 dc->dc_func = func;
2043 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2044}
2045
2046/*
2047 * Process a deferred configuration queue.
2048 */
2049static void
2050config_process_deferred(struct deferred_config_head *queue, device_t parent)
2051{
2052 struct deferred_config *dc, *ndc;
2053
2054 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2055 ndc = TAILQ_NEXT(dc, dc_queue);
2056 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2057 TAILQ_REMOVE(queue, dc, dc_queue);
2058 (*dc->dc_func)(dc->dc_dev);
2059 config_pending_decr(dc->dc_dev);
2060 kmem_free(dc, sizeof(*dc));
2061 }
2062 }
2063}
2064
2065/*
2066 * Manipulate the config_pending semaphore.
2067 */
2068void
2069config_pending_incr(device_t dev)
2070{
2071
2072 mutex_enter(&config_misc_lock);
2073 config_pending++;
2074#ifdef DEBUG_AUTOCONF
2075 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2076#endif
2077 mutex_exit(&config_misc_lock);
2078}
2079
2080void
2081config_pending_decr(device_t dev)
2082{
2083
2084#ifdef DIAGNOSTIC
2085 if (config_pending == 0)
2086 panic("config_pending_decr: config_pending == 0");
2087#endif
2088 mutex_enter(&config_misc_lock);
2089 config_pending--;
2090#ifdef DEBUG_AUTOCONF
2091 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2092#endif
2093 if (config_pending == 0)
2094 cv_broadcast(&config_misc_cv);
2095 mutex_exit(&config_misc_lock);
2096}
2097
2098/*
2099 * Register a "finalization" routine. Finalization routines are
2100 * called iteratively once all real devices have been found during
2101 * autoconfiguration, for as long as any one finalizer has done
2102 * any work.
2103 */
2104int
2105config_finalize_register(device_t dev, int (*fn)(device_t))
2106{
2107 struct finalize_hook *f;
2108
2109 /*
2110 * If finalization has already been done, invoke the
2111 * callback function now.
2112 */
2113 if (config_finalize_done) {
2114 while ((*fn)(dev) != 0)
2115 /* loop */ ;
2116 return 0;
2117 }
2118
2119 /* Ensure this isn't already on the list. */
2120 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2121 if (f->f_func == fn && f->f_dev == dev)
2122 return EEXIST;
2123 }
2124
2125 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2126 f->f_func = fn;
2127 f->f_dev = dev;
2128 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2129
2130 return 0;
2131}
2132
2133void
2134config_finalize(void)
2135{
2136 struct finalize_hook *f;
2137 struct pdevinit *pdev;
2138 extern struct pdevinit pdevinit[];
2139 int errcnt, rv;
2140
2141 /*
2142 * Now that device driver threads have been created, wait for
2143 * them to finish any deferred autoconfiguration.
2144 */
2145 mutex_enter(&config_misc_lock);
2146 while (config_pending != 0)
2147 cv_wait(&config_misc_cv, &config_misc_lock);
2148 mutex_exit(&config_misc_lock);
2149
2150 KERNEL_LOCK(1, NULL);
2151
2152 /* Attach pseudo-devices. */
2153 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2154 (*pdev->pdev_attach)(pdev->pdev_count);
2155
2156 /* Run the hooks until none of them does any work. */
2157 do {
2158 rv = 0;
2159 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2160 rv |= (*f->f_func)(f->f_dev);
2161 } while (rv != 0);
2162
2163 config_finalize_done = 1;
2164
2165 /* Now free all the hooks. */
2166 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2167 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2168 kmem_free(f, sizeof(*f));
2169 }
2170
2171 KERNEL_UNLOCK_ONE(NULL);
2172
2173 errcnt = aprint_get_error_count();
2174 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2175 (boothowto & AB_VERBOSE) == 0) {
2176 mutex_enter(&config_misc_lock);
2177 if (config_do_twiddle) {
2178 config_do_twiddle = 0;
2179 printf_nolog(" done.\n");
2180 }
2181 mutex_exit(&config_misc_lock);
2182 }
2183 if (errcnt != 0) {
2184 printf("WARNING: %d error%s while detecting hardware; "
2185 "check system log.\n", errcnt,
2186 errcnt == 1 ? "" : "s");
2187 }
2188}
2189
2190void
2191config_twiddle_init(void)
2192{
2193
2194 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2195 config_do_twiddle = 1;
2196 }
2197 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2198}
2199
2200void
2201config_twiddle_fn(void *cookie)
2202{
2203
2204 mutex_enter(&config_misc_lock);
2205 if (config_do_twiddle) {
2206 twiddle();
2207 callout_schedule(&config_twiddle_ch, mstohz(100));
2208 }
2209 mutex_exit(&config_misc_lock);
2210}
2211
2212static void
2213config_alldevs_enter(struct alldevs_foray *af)
2214{
2215 TAILQ_INIT(&af->af_garbage);
2216 mutex_enter(&alldevs_mtx);
2217 config_collect_garbage(&af->af_garbage);
2218}
2219
2220static void
2221config_alldevs_exit(struct alldevs_foray *af)
2222{
2223 mutex_exit(&alldevs_mtx);
2224 config_dump_garbage(&af->af_garbage);
2225}
2226
2227/*
2228 * device_lookup:
2229 *
2230 * Look up a device instance for a given driver.
2231 */
2232device_t
2233device_lookup(cfdriver_t cd, int unit)
2234{
2235 device_t dv;
2236
2237 mutex_enter(&alldevs_mtx);
2238 if (unit < 0 || unit >= cd->cd_ndevs)
2239 dv = NULL;
2240 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2241 dv = NULL;
2242 mutex_exit(&alldevs_mtx);
2243
2244 return dv;
2245}
2246
2247/*
2248 * device_lookup_private:
2249 *
2250 * Look up a softc instance for a given driver.
2251 */
2252void *
2253device_lookup_private(cfdriver_t cd, int unit)
2254{
2255
2256 return device_private(device_lookup(cd, unit));
2257}
2258
2259/*
2260 * device_find_by_xname:
2261 *
2262 * Returns the device of the given name or NULL if it doesn't exist.
2263 */
2264device_t
2265device_find_by_xname(const char *name)
2266{
2267 device_t dv;
2268 deviter_t di;
2269
2270 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2271 if (strcmp(device_xname(dv), name) == 0)
2272 break;
2273 }
2274 deviter_release(&di);
2275
2276 return dv;
2277}
2278
2279/*
2280 * device_find_by_driver_unit:
2281 *
2282 * Returns the device of the given driver name and unit or
2283 * NULL if it doesn't exist.
2284 */
2285device_t
2286device_find_by_driver_unit(const char *name, int unit)
2287{
2288 struct cfdriver *cd;
2289
2290 if ((cd = config_cfdriver_lookup(name)) == NULL)
2291 return NULL;
2292 return device_lookup(cd, unit);
2293}
2294
2295/*
2296 * Power management related functions.
2297 */
2298
2299bool
2300device_pmf_is_registered(device_t dev)
2301{
2302 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2303}
2304
2305bool
2306device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2307{
2308 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2309 return true;
2310 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2311 return false;
2312 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2313 dev->dv_driver_suspend != NULL &&
2314 !(*dev->dv_driver_suspend)(dev, qual))
2315 return false;
2316
2317 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2318 return true;
2319}
2320
2321bool
2322device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2323{
2324 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2325 return true;
2326 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2327 return false;
2328 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2329 dev->dv_driver_resume != NULL &&
2330 !(*dev->dv_driver_resume)(dev, qual))
2331 return false;
2332
2333 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2334 return true;
2335}
2336
2337bool
2338device_pmf_driver_shutdown(device_t dev, int how)
2339{
2340
2341 if (*dev->dv_driver_shutdown != NULL &&
2342 !(*dev->dv_driver_shutdown)(dev, how))
2343 return false;
2344 return true;
2345}
2346
2347bool
2348device_pmf_driver_register(device_t dev,
2349 bool (*suspend)(device_t, const pmf_qual_t *),
2350 bool (*resume)(device_t, const pmf_qual_t *),
2351 bool (*shutdown)(device_t, int))
2352{
2353 dev->dv_driver_suspend = suspend;
2354 dev->dv_driver_resume = resume;
2355 dev->dv_driver_shutdown = shutdown;
2356 dev->dv_flags |= DVF_POWER_HANDLERS;
2357 return true;
2358}
2359
2360static const char *
2361curlwp_name(void)
2362{
2363 if (curlwp->l_name != NULL)
2364 return curlwp->l_name;
2365 else
2366 return curlwp->l_proc->p_comm;
2367}
2368
2369void
2370device_pmf_driver_deregister(device_t dev)
2371{
2372 device_lock_t dvl = device_getlock(dev);
2373
2374 dev->dv_driver_suspend = NULL;
2375 dev->dv_driver_resume = NULL;
2376
2377 mutex_enter(&dvl->dvl_mtx);
2378 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2379 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2380 /* Wake a thread that waits for the lock. That
2381 * thread will fail to acquire the lock, and then
2382 * it will wake the next thread that waits for the
2383 * lock, or else it will wake us.
2384 */
2385 cv_signal(&dvl->dvl_cv);
2386 pmflock_debug(dev, __func__, __LINE__);
2387 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2388 pmflock_debug(dev, __func__, __LINE__);
2389 }
2390 mutex_exit(&dvl->dvl_mtx);
2391}
2392
2393bool
2394device_pmf_driver_child_register(device_t dev)
2395{
2396 device_t parent = device_parent(dev);
2397
2398 if (parent == NULL || parent->dv_driver_child_register == NULL)
2399 return true;
2400 return (*parent->dv_driver_child_register)(dev);
2401}
2402
2403void
2404device_pmf_driver_set_child_register(device_t dev,
2405 bool (*child_register)(device_t))
2406{
2407 dev->dv_driver_child_register = child_register;
2408}
2409
2410static void
2411pmflock_debug(device_t dev, const char *func, int line)
2412{
2413 device_lock_t dvl = device_getlock(dev);
2414
2415 aprint_debug_dev(dev,
2416 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2417 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2418}
2419
2420static bool
2421device_pmf_lock1(device_t dev)
2422{
2423 device_lock_t dvl = device_getlock(dev);
2424
2425 while (device_pmf_is_registered(dev) &&
2426 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2427 dvl->dvl_nwait++;
2428 pmflock_debug(dev, __func__, __LINE__);
2429 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2430 pmflock_debug(dev, __func__, __LINE__);
2431 dvl->dvl_nwait--;
2432 }
2433 if (!device_pmf_is_registered(dev)) {
2434 pmflock_debug(dev, __func__, __LINE__);
2435 /* We could not acquire the lock, but some other thread may
2436 * wait for it, also. Wake that thread.
2437 */
2438 cv_signal(&dvl->dvl_cv);
2439 return false;
2440 }
2441 dvl->dvl_nlock++;
2442 dvl->dvl_holder = curlwp;
2443 pmflock_debug(dev, __func__, __LINE__);
2444 return true;
2445}
2446
2447bool
2448device_pmf_lock(device_t dev)
2449{
2450 bool rc;
2451 device_lock_t dvl = device_getlock(dev);
2452
2453 mutex_enter(&dvl->dvl_mtx);
2454 rc = device_pmf_lock1(dev);
2455 mutex_exit(&dvl->dvl_mtx);
2456
2457 return rc;
2458}
2459
2460void
2461device_pmf_unlock(device_t dev)
2462{
2463 device_lock_t dvl = device_getlock(dev);
2464
2465 KASSERT(dvl->dvl_nlock > 0);
2466 mutex_enter(&dvl->dvl_mtx);
2467 if (--dvl->dvl_nlock == 0)
2468 dvl->dvl_holder = NULL;
2469 cv_signal(&dvl->dvl_cv);
2470 pmflock_debug(dev, __func__, __LINE__);
2471 mutex_exit(&dvl->dvl_mtx);
2472}
2473
2474device_lock_t
2475device_getlock(device_t dev)
2476{
2477 return &dev->dv_lock;
2478}
2479
2480void *
2481device_pmf_bus_private(device_t dev)
2482{
2483 return dev->dv_bus_private;
2484}
2485
2486bool
2487device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2488{
2489 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2490 return true;
2491 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2492 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2493 return false;
2494 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2495 dev->dv_bus_suspend != NULL &&
2496 !(*dev->dv_bus_suspend)(dev, qual))
2497 return false;
2498
2499 dev->dv_flags |= DVF_BUS_SUSPENDED;
2500 return true;
2501}
2502
2503bool
2504device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2505{
2506 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2507 return true;
2508 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2509 dev->dv_bus_resume != NULL &&
2510 !(*dev->dv_bus_resume)(dev, qual))
2511 return false;
2512
2513 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2514 return true;
2515}
2516
2517bool
2518device_pmf_bus_shutdown(device_t dev, int how)
2519{
2520
2521 if (*dev->dv_bus_shutdown != NULL &&
2522 !(*dev->dv_bus_shutdown)(dev, how))
2523 return false;
2524 return true;
2525}
2526
2527void
2528device_pmf_bus_register(device_t dev, void *priv,
2529 bool (*suspend)(device_t, const pmf_qual_t *),
2530 bool (*resume)(device_t, const pmf_qual_t *),
2531 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2532{
2533 dev->dv_bus_private = priv;
2534 dev->dv_bus_resume = resume;
2535 dev->dv_bus_suspend = suspend;
2536 dev->dv_bus_shutdown = shutdown;
2537 dev->dv_bus_deregister = deregister;
2538}
2539
2540void
2541device_pmf_bus_deregister(device_t dev)
2542{
2543 if (dev->dv_bus_deregister == NULL)
2544 return;
2545 (*dev->dv_bus_deregister)(dev);
2546 dev->dv_bus_private = NULL;
2547 dev->dv_bus_suspend = NULL;
2548 dev->dv_bus_resume = NULL;
2549 dev->dv_bus_deregister = NULL;
2550}
2551
2552void *
2553device_pmf_class_private(device_t dev)
2554{
2555 return dev->dv_class_private;
2556}
2557
2558bool
2559device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2560{
2561 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2562 return true;
2563 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2564 dev->dv_class_suspend != NULL &&
2565 !(*dev->dv_class_suspend)(dev, qual))
2566 return false;
2567
2568 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2569 return true;
2570}
2571
2572bool
2573device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2574{
2575 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2576 return true;
2577 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2578 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2579 return false;
2580 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2581 dev->dv_class_resume != NULL &&
2582 !(*dev->dv_class_resume)(dev, qual))
2583 return false;
2584
2585 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2586 return true;
2587}
2588
2589void
2590device_pmf_class_register(device_t dev, void *priv,
2591 bool (*suspend)(device_t, const pmf_qual_t *),
2592 bool (*resume)(device_t, const pmf_qual_t *),
2593 void (*deregister)(device_t))
2594{
2595 dev->dv_class_private = priv;
2596 dev->dv_class_suspend = suspend;
2597 dev->dv_class_resume = resume;
2598 dev->dv_class_deregister = deregister;
2599}
2600
2601void
2602device_pmf_class_deregister(device_t dev)
2603{
2604 if (dev->dv_class_deregister == NULL)
2605 return;
2606 (*dev->dv_class_deregister)(dev);
2607 dev->dv_class_private = NULL;
2608 dev->dv_class_suspend = NULL;
2609 dev->dv_class_resume = NULL;
2610 dev->dv_class_deregister = NULL;
2611}
2612
2613bool
2614device_active(device_t dev, devactive_t type)
2615{
2616 size_t i;
2617
2618 if (dev->dv_activity_count == 0)
2619 return false;
2620
2621 for (i = 0; i < dev->dv_activity_count; ++i) {
2622 if (dev->dv_activity_handlers[i] == NULL)
2623 break;
2624 (*dev->dv_activity_handlers[i])(dev, type);
2625 }
2626
2627 return true;
2628}
2629
2630bool
2631device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2632{
2633 void (**new_handlers)(device_t, devactive_t);
2634 void (**old_handlers)(device_t, devactive_t);
2635 size_t i, old_size, new_size;
2636 int s;
2637
2638 old_handlers = dev->dv_activity_handlers;
2639 old_size = dev->dv_activity_count;
2640
2641 KASSERT(old_size == 0 || old_handlers != NULL);
2642
2643 for (i = 0; i < old_size; ++i) {
2644 KASSERT(old_handlers[i] != handler);
2645 if (old_handlers[i] == NULL) {
2646 old_handlers[i] = handler;
2647 return true;
2648 }
2649 }
2650
2651 new_size = old_size + 4;
2652 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2653
2654 for (i = 0; i < old_size; ++i)
2655 new_handlers[i] = old_handlers[i];
2656 new_handlers[old_size] = handler;
2657 for (i = old_size+1; i < new_size; ++i)
2658 new_handlers[i] = NULL;
2659
2660 s = splhigh();
2661 dev->dv_activity_count = new_size;
2662 dev->dv_activity_handlers = new_handlers;
2663 splx(s);
2664
2665 if (old_size > 0)
2666 kmem_free(old_handlers, sizeof(void * [old_size]));
2667
2668 return true;
2669}
2670
2671void
2672device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2673{
2674 void (**old_handlers)(device_t, devactive_t);
2675 size_t i, old_size;
2676 int s;
2677
2678 old_handlers = dev->dv_activity_handlers;
2679 old_size = dev->dv_activity_count;
2680
2681 for (i = 0; i < old_size; ++i) {
2682 if (old_handlers[i] == handler)
2683 break;
2684 if (old_handlers[i] == NULL)
2685 return; /* XXX panic? */
2686 }
2687
2688 if (i == old_size)
2689 return; /* XXX panic? */
2690
2691 for (; i < old_size - 1; ++i) {
2692 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2693 continue;
2694
2695 if (i == 0) {
2696 s = splhigh();
2697 dev->dv_activity_count = 0;
2698 dev->dv_activity_handlers = NULL;
2699 splx(s);
2700 kmem_free(old_handlers, sizeof(void *[old_size]));
2701 }
2702 return;
2703 }
2704 old_handlers[i] = NULL;
2705}
2706
2707/* Return true iff the device_t `dev' exists at generation `gen'. */
2708static bool
2709device_exists_at(device_t dv, devgen_t gen)
2710{
2711 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2712 dv->dv_add_gen <= gen;
2713}
2714
2715static bool
2716deviter_visits(const deviter_t *di, device_t dv)
2717{
2718 return device_exists_at(dv, di->di_gen);
2719}
2720
2721/*
2722 * Device Iteration
2723 *
2724 * deviter_t: a device iterator. Holds state for a "walk" visiting
2725 * each device_t's in the device tree.
2726 *
2727 * deviter_init(di, flags): initialize the device iterator `di'
2728 * to "walk" the device tree. deviter_next(di) will return
2729 * the first device_t in the device tree, or NULL if there are
2730 * no devices.
2731 *
2732 * `flags' is one or more of DEVITER_F_RW, indicating that the
2733 * caller intends to modify the device tree by calling
2734 * config_detach(9) on devices in the order that the iterator
2735 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2736 * nearest the "root" of the device tree to be returned, first;
2737 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2738 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2739 * indicating both that deviter_init() should not respect any
2740 * locks on the device tree, and that deviter_next(di) may run
2741 * in more than one LWP before the walk has finished.
2742 *
2743 * Only one DEVITER_F_RW iterator may be in the device tree at
2744 * once.
2745 *
2746 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2747 *
2748 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2749 * DEVITER_F_LEAVES_FIRST are used in combination.
2750 *
2751 * deviter_first(di, flags): initialize the device iterator `di'
2752 * and return the first device_t in the device tree, or NULL
2753 * if there are no devices. The statement
2754 *
2755 * dv = deviter_first(di);
2756 *
2757 * is shorthand for
2758 *
2759 * deviter_init(di);
2760 * dv = deviter_next(di);
2761 *
2762 * deviter_next(di): return the next device_t in the device tree,
2763 * or NULL if there are no more devices. deviter_next(di)
2764 * is undefined if `di' was not initialized with deviter_init() or
2765 * deviter_first().
2766 *
2767 * deviter_release(di): stops iteration (subsequent calls to
2768 * deviter_next() will return NULL), releases any locks and
2769 * resources held by the device iterator.
2770 *
2771 * Device iteration does not return device_t's in any particular
2772 * order. An iterator will never return the same device_t twice.
2773 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2774 * is called repeatedly on the same `di', it will eventually return
2775 * NULL. It is ok to attach/detach devices during device iteration.
2776 */
2777void
2778deviter_init(deviter_t *di, deviter_flags_t flags)
2779{
2780 device_t dv;
2781
2782 memset(di, 0, sizeof(*di));
2783
2784 mutex_enter(&alldevs_mtx);
2785 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2786 flags |= DEVITER_F_RW;
2787
2788 if ((flags & DEVITER_F_RW) != 0)
2789 alldevs_nwrite++;
2790 else
2791 alldevs_nread++;
2792 di->di_gen = alldevs_gen++;
2793 mutex_exit(&alldevs_mtx);
2794
2795 di->di_flags = flags;
2796
2797 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2798 case DEVITER_F_LEAVES_FIRST:
2799 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2800 if (!deviter_visits(di, dv))
2801 continue;
2802 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2803 }
2804 break;
2805 case DEVITER_F_ROOT_FIRST:
2806 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2807 if (!deviter_visits(di, dv))
2808 continue;
2809 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2810 }
2811 break;
2812 default:
2813 break;
2814 }
2815
2816 deviter_reinit(di);
2817}
2818
2819static void
2820deviter_reinit(deviter_t *di)
2821{
2822 if ((di->di_flags & DEVITER_F_RW) != 0)
2823 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2824 else
2825 di->di_prev = TAILQ_FIRST(&alldevs);
2826}
2827
2828device_t
2829deviter_first(deviter_t *di, deviter_flags_t flags)
2830{
2831 deviter_init(di, flags);
2832 return deviter_next(di);
2833}
2834
2835static device_t
2836deviter_next2(deviter_t *di)
2837{
2838 device_t dv;
2839
2840 dv = di->di_prev;
2841
2842 if (dv == NULL)
2843 return NULL;
2844
2845 if ((di->di_flags & DEVITER_F_RW) != 0)
2846 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2847 else
2848 di->di_prev = TAILQ_NEXT(dv, dv_list);
2849
2850 return dv;
2851}
2852
2853static device_t
2854deviter_next1(deviter_t *di)
2855{
2856 device_t dv;
2857
2858 do {
2859 dv = deviter_next2(di);
2860 } while (dv != NULL && !deviter_visits(di, dv));
2861
2862 return dv;
2863}
2864
2865device_t
2866deviter_next(deviter_t *di)
2867{
2868 device_t dv = NULL;
2869
2870 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2871 case 0:
2872 return deviter_next1(di);
2873 case DEVITER_F_LEAVES_FIRST:
2874 while (di->di_curdepth >= 0) {
2875 if ((dv = deviter_next1(di)) == NULL) {
2876 di->di_curdepth--;
2877 deviter_reinit(di);
2878 } else if (dv->dv_depth == di->di_curdepth)
2879 break;
2880 }
2881 return dv;
2882 case DEVITER_F_ROOT_FIRST:
2883 while (di->di_curdepth <= di->di_maxdepth) {
2884 if ((dv = deviter_next1(di)) == NULL) {
2885 di->di_curdepth++;
2886 deviter_reinit(di);
2887 } else if (dv->dv_depth == di->di_curdepth)
2888 break;
2889 }
2890 return dv;
2891 default:
2892 return NULL;
2893 }
2894}
2895
2896void
2897deviter_release(deviter_t *di)
2898{
2899 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2900
2901 mutex_enter(&alldevs_mtx);
2902 if (rw)
2903 --alldevs_nwrite;
2904 else
2905 --alldevs_nread;
2906 /* XXX wake a garbage-collection thread */
2907 mutex_exit(&alldevs_mtx);
2908}
2909
2910const char *
2911cfdata_ifattr(const struct cfdata *cf)
2912{
2913 return cf->cf_pspec->cfp_iattr;
2914}
2915
2916bool
2917ifattr_match(const char *snull, const char *t)
2918{
2919 return (snull == NULL) || strcmp(snull, t) == 0;
2920}
2921
2922void
2923null_childdetached(device_t self, device_t child)
2924{
2925 /* do nothing */
2926}
2927
2928static void
2929sysctl_detach_setup(struct sysctllog **clog)
2930{
2931
2932 sysctl_createv(clog, 0, NULL, NULL,
2933 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2934 CTLTYPE_BOOL, "detachall",
2935 SYSCTL_DESCR("Detach all devices at shutdown"),
2936 NULL, 0, &detachall, 0,
2937 CTL_KERN, CTL_CREATE, CTL_EOL);
2938}
2939