1/* $NetBSD: ubsec.c,v 1.43 2016/07/07 06:55:41 msaitoh Exp $ */
2/* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3/* $OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$ */
4
5/*
6 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.43 2016/07/07 06:55:41 msaitoh Exp $");
39
40#undef UBSEC_DEBUG
41
42/*
43 * uBsec 5[56]01, 58xx hardware crypto accelerator
44 */
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/proc.h>
49#include <sys/endian.h>
50#ifdef __NetBSD__
51 #define UBSEC_NO_RNG /* hangs on attach */
52 #define letoh16 htole16
53 #define letoh32 htole32
54#endif
55#include <sys/errno.h>
56#include <sys/malloc.h>
57#include <sys/kernel.h>
58#include <sys/mbuf.h>
59#include <sys/device.h>
60#include <sys/module.h>
61#include <sys/queue.h>
62#include <sys/sysctl.h>
63
64#include <opencrypto/cryptodev.h>
65#include <opencrypto/xform.h>
66#ifdef __OpenBSD__
67 #include <dev/rndvar.h>
68 #include <sys/md5k.h>
69#else
70 #include <sys/cprng.h>
71 #include <sys/md5.h>
72 #include <sys/rndpool.h>
73 #include <sys/rndsource.h>
74#endif
75#include <sys/sha1.h>
76
77#include <dev/pci/pcireg.h>
78#include <dev/pci/pcivar.h>
79#include <dev/pci/pcidevs.h>
80
81#include <dev/pci/ubsecreg.h>
82#include <dev/pci/ubsecvar.h>
83
84/*
85 * Prototypes and count for the pci_device structure
86 */
87static int ubsec_probe(device_t, cfdata_t, void *);
88static void ubsec_attach(device_t, device_t, void *);
89static int ubsec_detach(device_t, int);
90static int ubsec_sysctl_init(void);
91static void ubsec_reset_board(struct ubsec_softc *);
92static void ubsec_init_board(struct ubsec_softc *);
93static void ubsec_init_pciregs(struct pci_attach_args *pa);
94static void ubsec_cleanchip(struct ubsec_softc *);
95static void ubsec_totalreset(struct ubsec_softc *);
96static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
97
98#ifdef __OpenBSD__
99struct cfattach ubsec_ca = {
100 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101};
102
103struct cfdriver ubsec_cd = {
104 0, "ubsec", DV_DULL
105};
106#else
107CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
108 ubsec_detach, NULL);
109extern struct cfdriver ubsec_cd;
110#endif
111
112/* patchable */
113#ifdef UBSEC_DEBUG
114extern int ubsec_debug;
115int ubsec_debug=1;
116#endif
117
118static int ubsec_intr(void *);
119static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
120static int ubsec_freesession(void*, u_int64_t);
121static int ubsec_process(void*, struct cryptop *, int hint);
122static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
123static void ubsec_feed(struct ubsec_softc *);
124static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
125static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
126static void ubsec_feed2(struct ubsec_softc *);
127static void ubsec_feed4(struct ubsec_softc *);
128#ifndef UBSEC_NO_RNG
129static void ubsec_rng(void *);
130static void ubsec_rng_locked(void *);
131static void ubsec_rng_get(size_t, void *);
132#endif /* UBSEC_NO_RNG */
133static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
134 struct ubsec_dma_alloc *, int);
135static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
136static int ubsec_dmamap_aligned(bus_dmamap_t);
137
138static int ubsec_kprocess(void*, struct cryptkop *, int);
139static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
140 struct cryptkop *, int);
141static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
142 struct cryptkop *, int);
143static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
144 struct cryptkop *, int);
145static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
146static int ubsec_ksigbits(struct crparam *);
147static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
148static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
149
150#ifdef UBSEC_DEBUG
151static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
152static void ubsec_dump_mcr(struct ubsec_mcr *);
153static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
154#endif
155
156#define READ_REG(sc,r) \
157 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
158
159#define WRITE_REG(sc,reg,val) \
160 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
161
162#define SWAP32(x) (x) = htole32(ntohl((x)))
163#ifndef HTOLE32
164 #define HTOLE32(x) (x) = htole32(x)
165#endif
166
167struct ubsec_stats ubsecstats;
168
169static struct sysctllog *ubsec_sysctllog;
170
171/*
172 * ubsec_maxbatch controls the number of crypto ops to voluntarily
173 * collect into one submission to the hardware. This batching happens
174 * when ops are dispatched from the crypto subsystem with a hint that
175 * more are to follow immediately. These ops must also not be marked
176 * with a ``no delay'' flag.
177 */
178static int ubsec_maxbatch = 1;
179
180/*
181 * ubsec_maxaggr controls the number of crypto ops to submit to the
182 * hardware as a unit. This aggregation reduces the number of interrupts
183 * to the host at the expense of increased latency (for all but the last
184 * operation). For network traffic setting this to one yields the highest
185 * performance but at the expense of more interrupt processing.
186 */
187static int ubsec_maxaggr = 1;
188
189static const struct ubsec_product {
190 pci_vendor_id_t ubsec_vendor;
191 pci_product_id_t ubsec_product;
192 int ubsec_flags;
193 int ubsec_statmask;
194 int ubsec_maxaggr;
195 const char *ubsec_name;
196} ubsec_products[] = {
197 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
198 0,
199 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 UBS_MIN_AGGR,
201 "Bluesteel 5501"
202 },
203 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
204 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
205 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 UBS_MIN_AGGR,
207 "Bluesteel 5601"
208 },
209
210 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
211 0,
212 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
213 UBS_MIN_AGGR,
214 "Broadcom BCM5801"
215 },
216
217 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
218 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
219 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
220 UBS_MIN_AGGR,
221 "Broadcom BCM5802"
222 },
223
224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
225 UBS_FLAGS_KEY | UBS_FLAGS_RNG,
226 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
227 UBS_MIN_AGGR,
228 "Broadcom BCM5805"
229 },
230
231 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
232 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
233 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
234 BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
235 UBS_MIN_AGGR,
236 "Broadcom BCM5820"
237 },
238
239 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
240 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
241 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
242 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
243 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
244 UBS_MIN_AGGR,
245 "Broadcom BCM5821"
246 },
247 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
248 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
249 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
250 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
251 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
252 UBS_MIN_AGGR,
253 "Sun Crypto Accelerator 1000"
254 },
255 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
256 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
257 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
258 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
259 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
260 UBS_MIN_AGGR,
261 "Broadcom BCM5821 (Sun)"
262 },
263
264 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
265 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
266 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
267 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
268 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
269 UBS_MIN_AGGR,
270 "Broadcom BCM5822"
271 },
272
273 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
274 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
275 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
276 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
277 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
278 UBS_MIN_AGGR,
279 "Broadcom BCM5823"
280 },
281
282 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825,
283 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
284 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
285 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
286 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
287 UBS_MIN_AGGR,
288 "Broadcom BCM5825"
289 },
290
291 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860,
292 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
293 UBS_FLAGS_LONGCTX |
294 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
295 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
296 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
297 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
298 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
299 UBS_MAX_AGGR,
300 "Broadcom BCM5860"
301 },
302
303 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861,
304 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
305 UBS_FLAGS_LONGCTX |
306 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
307 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
308 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
309 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
310 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
311 UBS_MAX_AGGR,
312 "Broadcom BCM5861"
313 },
314
315 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862,
316 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
317 UBS_FLAGS_LONGCTX |
318 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
319 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
320 BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
321 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
322 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
323 UBS_MAX_AGGR,
324 "Broadcom BCM5862"
325 },
326
327 { 0, 0,
328 0,
329 0,
330 0,
331 NULL
332 }
333};
334
335static const struct ubsec_product *
336ubsec_lookup(const struct pci_attach_args *pa)
337{
338 const struct ubsec_product *up;
339
340 for (up = ubsec_products; up->ubsec_name != NULL; up++) {
341 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
342 PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
343 return (up);
344 }
345 return (NULL);
346}
347
348static int
349ubsec_probe(device_t parent, cfdata_t match, void *aux)
350{
351 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
352
353 if (ubsec_lookup(pa) != NULL)
354 return (1);
355
356 return (0);
357}
358
359static void
360ubsec_attach(device_t parent, device_t self, void *aux)
361{
362 struct ubsec_softc *sc = device_private(self);
363 struct pci_attach_args *pa = aux;
364 const struct ubsec_product *up;
365 pci_chipset_tag_t pc = pa->pa_pc;
366 pci_intr_handle_t ih;
367 const char *intrstr = NULL;
368 pcireg_t memtype;
369 struct ubsec_dma *dmap;
370 u_int32_t cmd, i;
371 char intrbuf[PCI_INTRSTR_LEN];
372
373 sc->sc_dev = self;
374 sc->sc_pct = pc;
375
376 up = ubsec_lookup(pa);
377 if (up == NULL) {
378 printf("\n");
379 panic("ubsec_attach: impossible");
380 }
381
382 pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
383
384 SIMPLEQ_INIT(&sc->sc_queue);
385 SIMPLEQ_INIT(&sc->sc_qchip);
386 SIMPLEQ_INIT(&sc->sc_queue2);
387 SIMPLEQ_INIT(&sc->sc_qchip2);
388 SIMPLEQ_INIT(&sc->sc_queue4);
389 SIMPLEQ_INIT(&sc->sc_qchip4);
390 SIMPLEQ_INIT(&sc->sc_q2free);
391
392 sc->sc_flags = up->ubsec_flags;
393 sc->sc_statmask = up->ubsec_statmask;
394 sc->sc_maxaggr = up->ubsec_maxaggr;
395
396 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
397 cmd |= PCI_COMMAND_MASTER_ENABLE;
398 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
399
400 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
401 if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
402 &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
403 aprint_error_dev(self, "can't find mem space");
404 return;
405 }
406
407 sc->sc_dmat = pa->pa_dmat;
408
409 if (pci_intr_map(pa, &ih)) {
410 aprint_error_dev(self, "couldn't map interrupt\n");
411 return;
412 }
413 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
414 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
415 if (sc->sc_ih == NULL) {
416 aprint_error_dev(self, "couldn't establish interrupt");
417 if (intrstr != NULL)
418 aprint_error(" at %s", intrstr);
419 aprint_error("\n");
420 return;
421 }
422 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
423
424 sc->sc_cid = crypto_get_driverid(0);
425 if (sc->sc_cid < 0) {
426 aprint_error_dev(self, "couldn't get crypto driver id\n");
427 pci_intr_disestablish(pc, sc->sc_ih);
428 return;
429 }
430
431 sc->sc_rng_need = RND_POOLBITS / NBBY;
432 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
433
434 SIMPLEQ_INIT(&sc->sc_freequeue);
435 dmap = sc->sc_dmaa;
436 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
437 struct ubsec_q *q;
438
439 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
440 M_DEVBUF, M_ZERO|M_NOWAIT);
441 if (q == NULL) {
442 aprint_error_dev(self,
443 "can't allocate queue buffers\n");
444 break;
445 }
446
447 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
448 &dmap->d_alloc, 0)) {
449 aprint_error_dev(self, "can't allocate dma buffers\n");
450 free(q, M_DEVBUF);
451 break;
452 }
453 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
454
455 q->q_dma = dmap;
456 sc->sc_queuea[i] = q;
457
458 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
459 }
460
461 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
462 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
463 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
464 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
465 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
466 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
467 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
468 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
469 if (sc->sc_flags & UBS_FLAGS_AES) {
470 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
471 ubsec_newsession, ubsec_freesession, ubsec_process, sc);
472 }
473
474 /*
475 * Reset Broadcom chip
476 */
477 ubsec_reset_board(sc);
478
479 /*
480 * Init Broadcom specific PCI settings
481 */
482 ubsec_init_pciregs(pa);
483
484 /*
485 * Init Broadcom chip
486 */
487 ubsec_init_board(sc);
488
489#ifndef UBSEC_NO_RNG
490 if (sc->sc_flags & UBS_FLAGS_RNG) {
491 if (sc->sc_flags & UBS_FLAGS_RNG4)
492 sc->sc_statmask |= BS_STAT_MCR4_DONE;
493 else
494 sc->sc_statmask |= BS_STAT_MCR2_DONE;
495
496 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
497 &sc->sc_rng.rng_q.q_mcr, 0))
498 goto skip_rng;
499
500 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
501 &sc->sc_rng.rng_q.q_ctx, 0)) {
502 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
503 goto skip_rng;
504 }
505
506 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
507 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
508 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
509 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
510 goto skip_rng;
511 }
512
513 rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
514 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
515 RND_TYPE_RNG,
516 RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
517 if (hz >= 100)
518 sc->sc_rnghz = hz / 100;
519 else
520 sc->sc_rnghz = 1;
521#ifdef __OpenBSD__
522 timeout_set(&sc->sc_rngto, ubsec_rng, sc);
523 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
524#else
525 callout_init(&sc->sc_rngto, 0);
526 callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
527 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
528#endif
529 skip_rng:
530 if (sc->sc_rnghz)
531 aprint_normal_dev(self,
532 "random number generator enabled\n");
533 else
534 aprint_error_dev(self,
535 "WARNING: random number generator disabled\n");
536 }
537#endif /* UBSEC_NO_RNG */
538
539 if (sc->sc_flags & UBS_FLAGS_KEY) {
540 sc->sc_statmask |= BS_STAT_MCR2_DONE;
541
542 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
543 ubsec_kprocess, sc);
544#if 0
545 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
546 ubsec_kprocess, sc);
547#endif
548 }
549}
550
551static int
552ubsec_detach(device_t self, int flags)
553{
554 struct ubsec_softc *sc = device_private(self);
555 struct ubsec_q *q, *qtmp;
556 volatile u_int32_t ctrl;
557
558 /* disable interrupts */
559 /* XXX wait/abort current ops? where is DMAERR enabled? */
560 ctrl = READ_REG(sc, BS_CTRL);
561
562 ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
563 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
564 ctrl &= ~BS_CTRL_MCR4INT;
565
566 WRITE_REG(sc, BS_CTRL, ctrl);
567
568#ifndef UBSEC_NO_RNG
569 if (sc->sc_flags & UBS_FLAGS_RNG) {
570 callout_halt(&sc->sc_rngto, NULL);
571 ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
572 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
573 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
574 rnd_detach_source(&sc->sc_rnd_source);
575 }
576#endif /* UBSEC_NO_RNG */
577
578 crypto_unregister_all(sc->sc_cid);
579
580 mutex_spin_enter(&sc->sc_mtx);
581
582 ubsec_totalreset(sc); /* XXX leaves the chip running */
583
584 SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
585 ubsec_dma_free(sc, &q->q_dma->d_alloc);
586 if (q->q_src_map != NULL)
587 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
588 if (q->q_cached_dst_map != NULL)
589 bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
590 free(q, M_DEVBUF);
591 }
592
593 mutex_spin_exit(&sc->sc_mtx);
594
595 if (sc->sc_ih != NULL) {
596 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
597 sc->sc_ih = NULL;
598 }
599
600 if (sc->sc_memsize != 0) {
601 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
602 sc->sc_memsize = 0;
603 }
604
605 return 0;
606}
607
608MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
609
610#ifdef _MODULE
611#include "ioconf.c"
612#endif
613
614static int
615ubsec_modcmd(modcmd_t cmd, void *data)
616{
617 int error = 0;
618
619 switch (cmd) {
620 case MODULE_CMD_INIT:
621#ifdef _MODULE
622 error = config_init_component(cfdriver_ioconf_ubsec,
623 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
624#endif
625 if (error == 0)
626 error = ubsec_sysctl_init();
627 return error;
628 case MODULE_CMD_FINI:
629 if (ubsec_sysctllog != NULL)
630 sysctl_teardown(&ubsec_sysctllog);
631#ifdef _MODULE
632 error = config_fini_component(cfdriver_ioconf_ubsec,
633 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
634#endif
635 return error;
636 default:
637 return ENOTTY;
638 }
639}
640
641static int
642ubsec_sysctl_init(void)
643{
644 const struct sysctlnode *node = NULL;
645
646 ubsec_sysctllog = NULL;
647
648 sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
649 CTLFLAG_PERMANENT,
650 CTLTYPE_NODE, "ubsec",
651 SYSCTL_DESCR("ubsec opetions"),
652 NULL, 0, NULL, 0,
653 CTL_HW, CTL_CREATE, CTL_EOL);
654 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
655 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
656 CTLTYPE_INT, "maxbatch",
657 SYSCTL_DESCR("max ops to batch w/o interrupt"),
658 NULL, 0, &ubsec_maxbatch, 0,
659 CTL_CREATE, CTL_EOL);
660 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
661 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
662 CTLTYPE_INT, "maxaggr",
663 SYSCTL_DESCR("max ops to aggregate under one interrupt"),
664 NULL, 0, &ubsec_maxaggr, 0,
665 CTL_CREATE, CTL_EOL);
666
667 return 0;
668}
669
670/*
671 * UBSEC Interrupt routine
672 */
673static int
674ubsec_intr(void *arg)
675{
676 struct ubsec_softc *sc = arg;
677 volatile u_int32_t stat;
678 struct ubsec_q *q;
679 struct ubsec_dma *dmap;
680 int flags;
681 int npkts = 0, i;
682
683 mutex_spin_enter(&sc->sc_mtx);
684 stat = READ_REG(sc, BS_STAT);
685 stat &= sc->sc_statmask;
686 if (stat == 0) {
687 mutex_spin_exit(&sc->sc_mtx);
688 return (0);
689 }
690
691 WRITE_REG(sc, BS_STAT, stat); /* IACK */
692
693 /*
694 * Check to see if we have any packets waiting for us
695 */
696 if ((stat & BS_STAT_MCR1_DONE)) {
697 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
698 q = SIMPLEQ_FIRST(&sc->sc_qchip);
699 dmap = q->q_dma;
700
701 if ((dmap->d_dma->d_mcr.mcr_flags
702 & htole16(UBS_MCR_DONE)) == 0)
703 break;
704
705 q = SIMPLEQ_FIRST(&sc->sc_qchip);
706 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
707
708 npkts = q->q_nstacked_mcrs;
709 sc->sc_nqchip -= 1+npkts;
710 /*
711 * search for further sc_qchip ubsec_q's that share
712 * the same MCR, and complete them too, they must be
713 * at the top.
714 */
715 for (i = 0; i < npkts; i++) {
716 if(q->q_stacked_mcr[i])
717 ubsec_callback(sc, q->q_stacked_mcr[i]);
718 else
719 break;
720 }
721 ubsec_callback(sc, q);
722 }
723
724 /*
725 * Don't send any more packet to chip if there has been
726 * a DMAERR.
727 */
728 if (!(stat & BS_STAT_DMAERR))
729 ubsec_feed(sc);
730 }
731
732 /*
733 * Check to see if we have any key setups/rng's waiting for us
734 */
735 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
736 (stat & BS_STAT_MCR2_DONE)) {
737 struct ubsec_q2 *q2;
738 struct ubsec_mcr *mcr;
739
740 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
741 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
742
743 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
744 0, q2->q_mcr.dma_map->dm_mapsize,
745 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
746
747 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
748
749 /* A bug in new devices requires to swap this field */
750 if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
751 flags = htole16(mcr->mcr_flags);
752 else
753 flags = mcr->mcr_flags;
754 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
755 bus_dmamap_sync(sc->sc_dmat,
756 q2->q_mcr.dma_map, 0,
757 q2->q_mcr.dma_map->dm_mapsize,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759 break;
760 }
761 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
762 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
763 ubsec_callback2(sc, q2);
764 /*
765 * Don't send any more packet to chip if there has been
766 * a DMAERR.
767 */
768 if (!(stat & BS_STAT_DMAERR))
769 ubsec_feed2(sc);
770 }
771 }
772 if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
773 struct ubsec_q2 *q2;
774 struct ubsec_mcr *mcr;
775
776 while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
777 q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
778
779 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
780 0, q2->q_mcr.dma_map->dm_mapsize,
781 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
782
783 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
784
785 /* A bug in new devices requires to swap this field */
786 flags = htole16(mcr->mcr_flags);
787
788 if ((flags & htole16(UBS_MCR_DONE)) == 0) {
789 bus_dmamap_sync(sc->sc_dmat,
790 q2->q_mcr.dma_map, 0,
791 q2->q_mcr.dma_map->dm_mapsize,
792 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
793 break;
794 }
795 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
796 ubsec_callback2(sc, q2);
797 /*
798 * Don't send any more packet to chip if there has been
799 * a DMAERR.
800 */
801 if (!(stat & BS_STAT_DMAERR))
802 ubsec_feed4(sc);
803 }
804 }
805
806 /*
807 * Check to see if we got any DMA Error
808 */
809 if (stat & BS_STAT_DMAERR) {
810#ifdef UBSEC_DEBUG
811 if (ubsec_debug) {
812 volatile u_int32_t a = READ_REG(sc, BS_ERR);
813
814 printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
815 (a & BS_ERR_READ) ? "read" : "write",
816 a & BS_ERR_ADDR);
817 }
818#endif /* UBSEC_DEBUG */
819 ubsecstats.hst_dmaerr++;
820 ubsec_totalreset(sc);
821 ubsec_feed(sc);
822 }
823
824 if (sc->sc_needwakeup) { /* XXX check high watermark */
825 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
826#ifdef UBSEC_DEBUG
827 if (ubsec_debug)
828 printf("%s: wakeup crypto (%x)\n",
829 device_xname(sc->sc_dev), sc->sc_needwakeup);
830#endif /* UBSEC_DEBUG */
831 sc->sc_needwakeup &= ~wkeup;
832 crypto_unblock(sc->sc_cid, wkeup);
833 }
834 mutex_spin_exit(&sc->sc_mtx);
835 return (1);
836}
837
838/*
839 * ubsec_feed() - aggregate and post requests to chip
840 * OpenBSD comments:
841 * It is assumed that the caller set splnet()
842 */
843static void
844ubsec_feed(struct ubsec_softc *sc)
845{
846 struct ubsec_q *q, *q2;
847 int npkts, i;
848 void *v;
849 u_int32_t stat;
850#ifdef UBSEC_DEBUG
851 static int max;
852#endif /* UBSEC_DEBUG */
853
854 npkts = sc->sc_nqueue;
855 if (npkts > ubsecstats.hst_maxqueue)
856 ubsecstats.hst_maxqueue = npkts;
857 if (npkts < 2)
858 goto feed1;
859
860 /*
861 * Decide how many ops to combine in a single MCR. We cannot
862 * aggregate more than UBS_MAX_AGGR because this is the number
863 * of slots defined in the data structure. Otherwise we clamp
864 * based on the tunable parameter ubsec_maxaggr. Note that
865 * aggregation can happen in two ways: either by batching ops
866 * from above or because the h/w backs up and throttles us.
867 * Aggregating ops reduces the number of interrupts to the host
868 * but also (potentially) increases the latency for processing
869 * completed ops as we only get an interrupt when all aggregated
870 * ops have completed.
871 */
872 if (npkts > sc->sc_maxaggr)
873 npkts = sc->sc_maxaggr;
874 if (npkts > ubsec_maxaggr)
875 npkts = ubsec_maxaggr;
876 if (npkts > ubsecstats.hst_maxbatch)
877 ubsecstats.hst_maxbatch = npkts;
878 if (npkts < 2)
879 goto feed1;
880 ubsecstats.hst_totbatch += npkts-1;
881
882 if ((stat = READ_REG(sc, BS_STAT))
883 & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
884 if (stat & BS_STAT_DMAERR) {
885 ubsec_totalreset(sc);
886 ubsecstats.hst_dmaerr++;
887 } else {
888 ubsecstats.hst_mcr1full++;
889 }
890 return;
891 }
892
893#ifdef UBSEC_DEBUG
894 if (ubsec_debug)
895 printf("merging %d records\n", npkts);
896 /* XXX temporary aggregation statistics reporting code */
897 if (max < npkts) {
898 max = npkts;
899 printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
900 max);
901 }
902#endif /* UBSEC_DEBUG */
903
904 q = SIMPLEQ_FIRST(&sc->sc_queue);
905 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
906 --sc->sc_nqueue;
907
908 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
909 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
910 if (q->q_dst_map != NULL)
911 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
912 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
913
914 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
915
916 for (i = 0; i < q->q_nstacked_mcrs; i++) {
917 q2 = SIMPLEQ_FIRST(&sc->sc_queue);
918 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
919 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
920 if (q2->q_dst_map != NULL)
921 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
922 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
923 q2= SIMPLEQ_FIRST(&sc->sc_queue);
924 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
925 --sc->sc_nqueue;
926
927 v = ((void *)&q2->q_dma->d_dma->d_mcr);
928 v = (char*)v + (sizeof(struct ubsec_mcr) -
929 sizeof(struct ubsec_mcr_add));
930 memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
931 sizeof(struct ubsec_mcr_add));
932 q->q_stacked_mcr[i] = q2;
933 }
934 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
935 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
936 sc->sc_nqchip += npkts;
937 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
938 ubsecstats.hst_maxqchip = sc->sc_nqchip;
939 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
940 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
941 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
942 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
943 offsetof(struct ubsec_dmachunk, d_mcr));
944 return;
945
946feed1:
947 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
948 if ((stat = READ_REG(sc, BS_STAT))
949 & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
950 if (stat & BS_STAT_DMAERR) {
951 ubsec_totalreset(sc);
952 ubsecstats.hst_dmaerr++;
953 } else {
954 ubsecstats.hst_mcr1full++;
955 }
956 break;
957 }
958
959 q = SIMPLEQ_FIRST(&sc->sc_queue);
960
961 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
962 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
963 if (q->q_dst_map != NULL)
964 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
965 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
966 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
967 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
968 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
969
970 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
971 offsetof(struct ubsec_dmachunk, d_mcr));
972#ifdef UBSEC_DEBUG
973 if (ubsec_debug)
974 printf("feed: q->chip %p %08x stat %08x\n",
975 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
976 stat);
977#endif /* UBSEC_DEBUG */
978 q = SIMPLEQ_FIRST(&sc->sc_queue);
979 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
980 --sc->sc_nqueue;
981 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
982 sc->sc_nqchip++;
983 }
984 if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
985 ubsecstats.hst_maxqchip = sc->sc_nqchip;
986}
987
988/*
989 * Allocate a new 'session' and return an encoded session id. 'sidp'
990 * contains our registration id, and should contain an encoded session
991 * id on successful allocation.
992 */
993static int
994ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
995{
996 struct cryptoini *c, *encini = NULL, *macini = NULL;
997 struct ubsec_softc *sc;
998 struct ubsec_session *ses = NULL;
999 MD5_CTX md5ctx;
1000 SHA1_CTX sha1ctx;
1001 int i, sesn;
1002
1003 sc = arg;
1004 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
1005
1006 if (sidp == NULL || cri == NULL || sc == NULL)
1007 return (EINVAL);
1008
1009 for (c = cri; c != NULL; c = c->cri_next) {
1010 if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
1011 c->cri_alg == CRYPTO_SHA1_HMAC_96) {
1012 if (macini)
1013 return (EINVAL);
1014 macini = c;
1015 } else if (c->cri_alg == CRYPTO_DES_CBC ||
1016 c->cri_alg == CRYPTO_3DES_CBC ||
1017 c->cri_alg == CRYPTO_AES_CBC) {
1018 if (encini)
1019 return (EINVAL);
1020 encini = c;
1021 } else
1022 return (EINVAL);
1023 }
1024 if (encini == NULL && macini == NULL)
1025 return (EINVAL);
1026
1027 if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
1028 switch (encini->cri_klen) {
1029 case 128:
1030 case 192:
1031 case 256:
1032 break;
1033 default:
1034 return (EINVAL);
1035 }
1036 }
1037
1038 if (sc->sc_sessions == NULL) {
1039 ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1040 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1041 if (ses == NULL)
1042 return (ENOMEM);
1043 sesn = 0;
1044 sc->sc_nsessions = 1;
1045 } else {
1046 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1047 if (sc->sc_sessions[sesn].ses_used == 0) {
1048 ses = &sc->sc_sessions[sesn];
1049 break;
1050 }
1051 }
1052
1053 if (ses == NULL) {
1054 sesn = sc->sc_nsessions;
1055 ses = (struct ubsec_session *)malloc((sesn + 1) *
1056 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1057 if (ses == NULL)
1058 return (ENOMEM);
1059 memcpy(ses, sc->sc_sessions, sesn *
1060 sizeof(struct ubsec_session));
1061 memset(sc->sc_sessions, 0, sesn *
1062 sizeof(struct ubsec_session));
1063 free(sc->sc_sessions, M_DEVBUF);
1064 sc->sc_sessions = ses;
1065 ses = &sc->sc_sessions[sesn];
1066 sc->sc_nsessions++;
1067 }
1068 }
1069
1070 memset(ses, 0, sizeof(struct ubsec_session));
1071 ses->ses_used = 1;
1072 if (encini) {
1073 /* get an IV, network byte order */
1074#ifdef __NetBSD__
1075 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1076#else
1077 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1078#endif
1079
1080 /* Go ahead and compute key in ubsec's byte order */
1081 if (encini->cri_alg == CRYPTO_AES_CBC) {
1082 memcpy(ses->ses_key, encini->cri_key,
1083 encini->cri_klen / 8);
1084 }
1085 if (encini->cri_alg == CRYPTO_DES_CBC) {
1086 memcpy(&ses->ses_key[0], encini->cri_key, 8);
1087 memcpy(&ses->ses_key[2], encini->cri_key, 8);
1088 memcpy(&ses->ses_key[4], encini->cri_key, 8);
1089 } else
1090 memcpy(ses->ses_key, encini->cri_key, 24);
1091
1092 SWAP32(ses->ses_key[0]);
1093 SWAP32(ses->ses_key[1]);
1094 SWAP32(ses->ses_key[2]);
1095 SWAP32(ses->ses_key[3]);
1096 SWAP32(ses->ses_key[4]);
1097 SWAP32(ses->ses_key[5]);
1098 }
1099
1100 if (macini) {
1101 for (i = 0; i < macini->cri_klen / 8; i++)
1102 macini->cri_key[i] ^= HMAC_IPAD_VAL;
1103
1104 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1105 MD5Init(&md5ctx);
1106 MD5Update(&md5ctx, macini->cri_key,
1107 macini->cri_klen / 8);
1108 MD5Update(&md5ctx, hmac_ipad_buffer,
1109 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1110 memcpy(ses->ses_hminner, md5ctx.state,
1111 sizeof(md5ctx.state));
1112 } else {
1113 SHA1Init(&sha1ctx);
1114 SHA1Update(&sha1ctx, macini->cri_key,
1115 macini->cri_klen / 8);
1116 SHA1Update(&sha1ctx, hmac_ipad_buffer,
1117 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1118 memcpy(ses->ses_hminner, sha1ctx.state,
1119 sizeof(sha1ctx.state));
1120 }
1121
1122 for (i = 0; i < macini->cri_klen / 8; i++)
1123 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1124
1125 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1126 MD5Init(&md5ctx);
1127 MD5Update(&md5ctx, macini->cri_key,
1128 macini->cri_klen / 8);
1129 MD5Update(&md5ctx, hmac_opad_buffer,
1130 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1131 memcpy(ses->ses_hmouter, md5ctx.state,
1132 sizeof(md5ctx.state));
1133 } else {
1134 SHA1Init(&sha1ctx);
1135 SHA1Update(&sha1ctx, macini->cri_key,
1136 macini->cri_klen / 8);
1137 SHA1Update(&sha1ctx, hmac_opad_buffer,
1138 HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1139 memcpy(ses->ses_hmouter, sha1ctx.state,
1140 sizeof(sha1ctx.state));
1141 }
1142
1143 for (i = 0; i < macini->cri_klen / 8; i++)
1144 macini->cri_key[i] ^= HMAC_OPAD_VAL;
1145 }
1146
1147 *sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1148 return (0);
1149}
1150
1151/*
1152 * Deallocate a session.
1153 */
1154static int
1155ubsec_freesession(void *arg, u_int64_t tid)
1156{
1157 struct ubsec_softc *sc;
1158 int session;
1159 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1160
1161 sc = arg;
1162 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1163
1164 session = UBSEC_SESSION(sid);
1165 if (session >= sc->sc_nsessions)
1166 return (EINVAL);
1167
1168 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1169 return (0);
1170}
1171
1172#ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1173static void
1174ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1175 int error)
1176{
1177 struct ubsec_operand *op = arg;
1178
1179 KASSERT(nsegs <= UBS_MAX_SCATTER
1180 /*, ("Too many DMA segments returned when mapping operand")*/);
1181#ifdef UBSEC_DEBUG
1182 if (ubsec_debug)
1183 printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1184 (u_int) mapsize, nsegs);
1185#endif
1186 op->mapsize = mapsize;
1187 op->nsegs = nsegs;
1188 memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1189}
1190#endif
1191
1192static int
1193ubsec_process(void *arg, struct cryptop *crp, int hint)
1194{
1195 struct ubsec_q *q = NULL;
1196#ifdef __OpenBSD__
1197 int card;
1198#endif
1199 int err = 0, i, j, nicealign;
1200 struct ubsec_softc *sc;
1201 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1202 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1203 int sskip, dskip, stheend, dtheend;
1204 int16_t coffset;
1205 struct ubsec_session *ses, key;
1206 struct ubsec_dma *dmap = NULL;
1207 u_int16_t flags = 0;
1208 int ivlen = 0, keylen = 0;
1209
1210 sc = arg;
1211 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1212
1213 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1214 ubsecstats.hst_invalid++;
1215 return (EINVAL);
1216 }
1217 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1218 ubsecstats.hst_badsession++;
1219 return (EINVAL);
1220 }
1221
1222 mutex_spin_enter(&sc->sc_mtx);
1223
1224 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1225 ubsecstats.hst_queuefull++;
1226 sc->sc_needwakeup |= CRYPTO_SYMQ;
1227 mutex_spin_exit(&sc->sc_mtx);
1228 return(ERESTART);
1229 }
1230
1231 q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1232 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1233 mutex_spin_exit(&sc->sc_mtx);
1234
1235 dmap = q->q_dma; /* Save dma pointer */
1236 /* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1237 memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1238 memset(&key, 0, sizeof(key));
1239
1240 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1241 q->q_dma = dmap;
1242 ses = &sc->sc_sessions[q->q_sesn];
1243
1244 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1245 q->q_src_m = (struct mbuf *)crp->crp_buf;
1246 q->q_dst_m = (struct mbuf *)crp->crp_buf;
1247 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1248 q->q_src_io = (struct uio *)crp->crp_buf;
1249 q->q_dst_io = (struct uio *)crp->crp_buf;
1250 } else {
1251 ubsecstats.hst_badflags++;
1252 err = EINVAL;
1253 goto errout; /* XXX we don't handle contiguous blocks! */
1254 }
1255
1256 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1257
1258 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1259 dmap->d_dma->d_mcr.mcr_flags = 0;
1260 q->q_crp = crp;
1261
1262 crd1 = crp->crp_desc;
1263 if (crd1 == NULL) {
1264 ubsecstats.hst_nodesc++;
1265 err = EINVAL;
1266 goto errout;
1267 }
1268 crd2 = crd1->crd_next;
1269
1270 if (crd2 == NULL) {
1271 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1272 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1273 maccrd = crd1;
1274 enccrd = NULL;
1275 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1276 crd1->crd_alg == CRYPTO_3DES_CBC ||
1277 crd1->crd_alg == CRYPTO_AES_CBC) {
1278 maccrd = NULL;
1279 enccrd = crd1;
1280 } else {
1281 ubsecstats.hst_badalg++;
1282 err = EINVAL;
1283 goto errout;
1284 }
1285 } else {
1286 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1287 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1288 (crd2->crd_alg == CRYPTO_DES_CBC ||
1289 crd2->crd_alg == CRYPTO_3DES_CBC ||
1290 crd2->crd_alg == CRYPTO_AES_CBC) &&
1291 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1292 maccrd = crd1;
1293 enccrd = crd2;
1294 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1295 crd1->crd_alg == CRYPTO_3DES_CBC ||
1296 crd1->crd_alg == CRYPTO_AES_CBC) &&
1297 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1298 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1299 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1300 enccrd = crd1;
1301 maccrd = crd2;
1302 } else {
1303 /*
1304 * We cannot order the ubsec as requested
1305 */
1306 ubsecstats.hst_badalg++;
1307 err = EINVAL;
1308 goto errout;
1309 }
1310 }
1311
1312 if (enccrd) {
1313 if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1314 if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1315 /*
1316 * We cannot order the ubsec as requested
1317 */
1318 ubsecstats.hst_badalg++;
1319 err = EINVAL;
1320 goto errout;
1321 }
1322 flags |= htole16(UBS_PKTCTX_ENC_AES);
1323 switch (enccrd->crd_klen) {
1324 case 128:
1325 case 192:
1326 case 256:
1327 keylen = enccrd->crd_klen / 8;
1328 break;
1329 default:
1330 err = EINVAL;
1331 goto errout;
1332 }
1333 ivlen = 16;
1334 } else {
1335 flags |= htole16(UBS_PKTCTX_ENC_3DES);
1336 ivlen = 8;
1337 keylen = 24;
1338 }
1339
1340 encoffset = enccrd->crd_skip;
1341
1342 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1343 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1344
1345 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1346 memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1347 else {
1348 for (i = 0; i < (ivlen / 4); i++)
1349 key.ses_iv[i] = ses->ses_iv[i];
1350 }
1351
1352 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1353 if (crp->crp_flags & CRYPTO_F_IMBUF)
1354 m_copyback(q->q_src_m,
1355 enccrd->crd_inject,
1356 ivlen, (void *)key.ses_iv);
1357 else if (crp->crp_flags & CRYPTO_F_IOV)
1358 cuio_copyback(q->q_src_io,
1359 enccrd->crd_inject,
1360 ivlen, (void *)key.ses_iv);
1361 }
1362 } else {
1363 flags |= htole16(UBS_PKTCTX_INBOUND);
1364
1365 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1366 memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1367 else if (crp->crp_flags & CRYPTO_F_IMBUF)
1368 m_copydata(q->q_src_m, enccrd->crd_inject,
1369 ivlen, (void *)key.ses_iv);
1370 else if (crp->crp_flags & CRYPTO_F_IOV)
1371 cuio_copydata(q->q_src_io,
1372 enccrd->crd_inject, 8,
1373 (void *)key.ses_iv);
1374 }
1375
1376 for (i = 0; i < (keylen / 4); i++)
1377 key.ses_key[i] = ses->ses_key[i];
1378 for (i = 0; i < (ivlen / 4); i++)
1379 SWAP32(key.ses_iv[i]);
1380 }
1381
1382 if (maccrd) {
1383 macoffset = maccrd->crd_skip;
1384
1385 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1386 flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1387 else
1388 flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1389
1390 for (i = 0; i < 5; i++) {
1391 key.ses_hminner[i] = ses->ses_hminner[i];
1392 key.ses_hmouter[i] = ses->ses_hmouter[i];
1393
1394 HTOLE32(key.ses_hminner[i]);
1395 HTOLE32(key.ses_hmouter[i]);
1396 }
1397 }
1398
1399 if (enccrd && maccrd) {
1400 /*
1401 * ubsec cannot handle packets where the end of encryption
1402 * and authentication are not the same, or where the
1403 * encrypted part begins before the authenticated part.
1404 */
1405 if ((encoffset + enccrd->crd_len) !=
1406 (macoffset + maccrd->crd_len)) {
1407 ubsecstats.hst_lenmismatch++;
1408 err = EINVAL;
1409 goto errout;
1410 }
1411 if (enccrd->crd_skip < maccrd->crd_skip) {
1412 ubsecstats.hst_skipmismatch++;
1413 err = EINVAL;
1414 goto errout;
1415 }
1416 sskip = maccrd->crd_skip;
1417 cpskip = dskip = enccrd->crd_skip;
1418 stheend = maccrd->crd_len;
1419 dtheend = enccrd->crd_len;
1420 coffset = enccrd->crd_skip - maccrd->crd_skip;
1421 cpoffset = cpskip + dtheend;
1422#ifdef UBSEC_DEBUG
1423 if (ubsec_debug) {
1424 printf("mac: skip %d, len %d, inject %d\n",
1425 maccrd->crd_skip, maccrd->crd_len,
1426 maccrd->crd_inject);
1427 printf("enc: skip %d, len %d, inject %d\n",
1428 enccrd->crd_skip, enccrd->crd_len,
1429 enccrd->crd_inject);
1430 printf("src: skip %d, len %d\n", sskip, stheend);
1431 printf("dst: skip %d, len %d\n", dskip, dtheend);
1432 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1433 coffset, stheend, cpskip, cpoffset);
1434 }
1435#endif
1436 } else {
1437 cpskip = dskip = sskip = macoffset + encoffset;
1438 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1439 cpoffset = cpskip + dtheend;
1440 coffset = 0;
1441 }
1442
1443 if (q->q_src_map == NULL) {
1444 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
1445 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1446 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1447 err = ENOMEM;
1448 goto errout;
1449 }
1450 }
1451 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1452 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1453 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1454 ubsecstats.hst_noload++;
1455 err = ENOMEM;
1456 goto errout;
1457 }
1458 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1459 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1460 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1461 ubsecstats.hst_noload++;
1462 err = ENOMEM;
1463 goto errout;
1464 }
1465 }
1466 nicealign = ubsec_dmamap_aligned(q->q_src_map);
1467
1468 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1469
1470#ifdef UBSEC_DEBUG
1471 if (ubsec_debug)
1472 printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1473#endif
1474 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1475 struct ubsec_pktbuf *pb;
1476 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1477 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1478
1479 if (sskip >= packl) {
1480 sskip -= packl;
1481 continue;
1482 }
1483
1484 packl -= sskip;
1485 packp += sskip;
1486 sskip = 0;
1487
1488 if (packl > 0xfffc) {
1489 err = EIO;
1490 goto errout;
1491 }
1492
1493 if (j == 0)
1494 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1495 else
1496 pb = &dmap->d_dma->d_sbuf[j - 1];
1497
1498 pb->pb_addr = htole32(packp);
1499
1500 if (stheend) {
1501 if (packl > stheend) {
1502 pb->pb_len = htole32(stheend);
1503 stheend = 0;
1504 } else {
1505 pb->pb_len = htole32(packl);
1506 stheend -= packl;
1507 }
1508 } else
1509 pb->pb_len = htole32(packl);
1510
1511 if ((i + 1) == q->q_src_map->dm_nsegs)
1512 pb->pb_next = 0;
1513 else
1514 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1515 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1516 j++;
1517 }
1518
1519 if (enccrd == NULL && maccrd != NULL) {
1520 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1521 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1522 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1523 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1524#ifdef UBSEC_DEBUG
1525 if (ubsec_debug)
1526 printf("opkt: %x %x %x\n",
1527 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1528 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1529 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1530
1531#endif
1532 } else {
1533 if (crp->crp_flags & CRYPTO_F_IOV) {
1534 if (!nicealign) {
1535 ubsecstats.hst_iovmisaligned++;
1536 err = EINVAL;
1537 goto errout;
1538 }
1539 if (q->q_dst_map == NULL) {
1540 if (q->q_cached_dst_map == NULL) {
1541 /*
1542 * XXX: ``what the heck's that''
1543 * 0xfff0?
1544 */
1545 if (bus_dmamap_create(sc->sc_dmat,
1546 0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
1547 BUS_DMA_NOWAIT,
1548 &q->q_cached_dst_map) != 0) {
1549 ubsecstats.hst_nomap++;
1550 err = ENOMEM;
1551 goto errout;
1552 }
1553 }
1554 q->q_dst_map = q->q_cached_dst_map;
1555 }
1556 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1557 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1558 ubsecstats.hst_noload++;
1559 err = ENOMEM;
1560 goto errout;
1561 }
1562 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1563 if (nicealign) {
1564 q->q_dst_m = q->q_src_m;
1565 q->q_dst_map = q->q_src_map;
1566 } else {
1567 int totlen, len;
1568 struct mbuf *m, *top, **mp;
1569
1570 ubsecstats.hst_unaligned++;
1571 totlen = q->q_src_map->dm_mapsize;
1572 if (q->q_src_m->m_flags & M_PKTHDR) {
1573 len = MHLEN;
1574 MGETHDR(m, M_DONTWAIT, MT_DATA);
1575 /*XXX FIXME: m_dup_pkthdr */
1576 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1577 m_free(m);
1578 m = NULL;
1579 }
1580 } else {
1581 len = MLEN;
1582 MGET(m, M_DONTWAIT, MT_DATA);
1583 }
1584 if (m == NULL) {
1585 ubsecstats.hst_nombuf++;
1586 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1587 goto errout;
1588 }
1589 if (len == MHLEN)
1590 /*XXX was M_DUP_PKTHDR*/
1591 M_COPY_PKTHDR(m, q->q_src_m);
1592 if (totlen >= MINCLSIZE) {
1593 MCLGET(m, M_DONTWAIT);
1594 if ((m->m_flags & M_EXT) == 0) {
1595 m_free(m);
1596 ubsecstats.hst_nomcl++;
1597 err = sc->sc_nqueue
1598 ? ERESTART : ENOMEM;
1599 goto errout;
1600 }
1601 len = MCLBYTES;
1602 }
1603 m->m_len = len;
1604 top = NULL;
1605 mp = &top;
1606
1607 while (totlen > 0) {
1608 if (top) {
1609 MGET(m, M_DONTWAIT, MT_DATA);
1610 if (m == NULL) {
1611 m_freem(top);
1612 ubsecstats.hst_nombuf++;
1613 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1614 goto errout;
1615 }
1616 len = MLEN;
1617 }
1618 if (top && totlen >= MINCLSIZE) {
1619 MCLGET(m, M_DONTWAIT);
1620 if ((m->m_flags & M_EXT) == 0) {
1621 *mp = m;
1622 m_freem(top);
1623 ubsecstats.hst_nomcl++;
1624 err = sc->sc_nqueue ? ERESTART : ENOMEM;
1625 goto errout;
1626 }
1627 len = MCLBYTES;
1628 }
1629 m->m_len = len = min(totlen, len);
1630 totlen -= len;
1631 *mp = m;
1632 mp = &m->m_next;
1633 }
1634 q->q_dst_m = top;
1635 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1636 cpskip, cpoffset);
1637 if (q->q_dst_map == NULL) {
1638 if (q->q_cached_dst_map == NULL) {
1639 /* XXX again, what the heck is that 0xfff0? */
1640 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1641 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1642 &q->q_cached_dst_map) != 0) {
1643 ubsecstats.hst_nomap++;
1644 err = ENOMEM;
1645 goto errout;
1646 }
1647 }
1648 q->q_dst_map = q->q_cached_dst_map;
1649 }
1650 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1651 q->q_dst_map, q->q_dst_m,
1652 BUS_DMA_NOWAIT) != 0) {
1653 ubsecstats.hst_noload++;
1654 err = ENOMEM;
1655 goto errout;
1656 }
1657 }
1658 } else {
1659 ubsecstats.hst_badflags++;
1660 err = EINVAL;
1661 goto errout;
1662 }
1663
1664#ifdef UBSEC_DEBUG
1665 if (ubsec_debug)
1666 printf("dst skip: %d\n", dskip);
1667#endif
1668 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1669 struct ubsec_pktbuf *pb;
1670 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1671 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1672
1673 if (dskip >= packl) {
1674 dskip -= packl;
1675 continue;
1676 }
1677
1678 packl -= dskip;
1679 packp += dskip;
1680 dskip = 0;
1681
1682 if (packl > 0xfffc) {
1683 err = EIO;
1684 goto errout;
1685 }
1686
1687 if (j == 0)
1688 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1689 else
1690 pb = &dmap->d_dma->d_dbuf[j - 1];
1691
1692 pb->pb_addr = htole32(packp);
1693
1694 if (dtheend) {
1695 if (packl > dtheend) {
1696 pb->pb_len = htole32(dtheend);
1697 dtheend = 0;
1698 } else {
1699 pb->pb_len = htole32(packl);
1700 dtheend -= packl;
1701 }
1702 } else
1703 pb->pb_len = htole32(packl);
1704
1705 if ((i + 1) == q->q_dst_map->dm_nsegs) {
1706 if (maccrd)
1707 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1708 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1709 else
1710 pb->pb_next = 0;
1711 } else
1712 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1713 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1714 j++;
1715 }
1716 }
1717
1718 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1719 offsetof(struct ubsec_dmachunk, d_ctx));
1720
1721 if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1722 struct ubsec_pktctx_aes128 *aes128;
1723 struct ubsec_pktctx_aes192 *aes192;
1724 struct ubsec_pktctx_aes256 *aes256;
1725 struct ubsec_pktctx_hdr *ph;
1726 u_int8_t *ctx;
1727
1728 ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1729 offsetof(struct ubsec_dmachunk, d_ctx);
1730
1731 ph = (struct ubsec_pktctx_hdr *)ctx;
1732 ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1733 ph->ph_flags = flags;
1734 ph->ph_offset = htole16(coffset >> 2);
1735
1736 switch (enccrd->crd_klen) {
1737 case 128:
1738 aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1739 ph->ph_len = htole16(sizeof(*aes128));
1740 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1741 for (i = 0; i < 4; i++)
1742 aes128->pc_aeskey[i] = key.ses_key[i];
1743 for (i = 0; i < 5; i++)
1744 aes128->pc_hminner[i] = key.ses_hminner[i];
1745 for (i = 0; i < 5; i++)
1746 aes128->pc_hmouter[i] = key.ses_hmouter[i];
1747 for (i = 0; i < 4; i++)
1748 aes128->pc_iv[i] = key.ses_iv[i];
1749 break;
1750 case 192:
1751 aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1752 ph->ph_len = htole16(sizeof(*aes192));
1753 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1754 for (i = 0; i < 6; i++)
1755 aes192->pc_aeskey[i] = key.ses_key[i];
1756 for (i = 0; i < 5; i++)
1757 aes192->pc_hminner[i] = key.ses_hminner[i];
1758 for (i = 0; i < 5; i++)
1759 aes192->pc_hmouter[i] = key.ses_hmouter[i];
1760 for (i = 0; i < 4; i++)
1761 aes192->pc_iv[i] = key.ses_iv[i];
1762 break;
1763 case 256:
1764 aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1765 ph->ph_len = htole16(sizeof(*aes256));
1766 ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1767 for (i = 0; i < 8; i++)
1768 aes256->pc_aeskey[i] = key.ses_key[i];
1769 for (i = 0; i < 5; i++)
1770 aes256->pc_hminner[i] = key.ses_hminner[i];
1771 for (i = 0; i < 5; i++)
1772 aes256->pc_hmouter[i] = key.ses_hmouter[i];
1773 for (i = 0; i < 4; i++)
1774 aes256->pc_iv[i] = key.ses_iv[i];
1775 break;
1776 }
1777 } else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1778 struct ubsec_pktctx_3des *ctx;
1779 struct ubsec_pktctx_hdr *ph;
1780
1781 ctx = (struct ubsec_pktctx_3des *)
1782 ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1783 offsetof(struct ubsec_dmachunk, d_ctx));
1784
1785 ph = (struct ubsec_pktctx_hdr *)ctx;
1786 ph->ph_len = htole16(sizeof(*ctx));
1787 ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1788 ph->ph_flags = flags;
1789 ph->ph_offset = htole16(coffset >> 2);
1790
1791 for (i = 0; i < 6; i++)
1792 ctx->pc_deskey[i] = key.ses_key[i];
1793 for (i = 0; i < 5; i++)
1794 ctx->pc_hminner[i] = key.ses_hminner[i];
1795 for (i = 0; i < 5; i++)
1796 ctx->pc_hmouter[i] = key.ses_hmouter[i];
1797 for (i = 0; i < 2; i++)
1798 ctx->pc_iv[i] = key.ses_iv[i];
1799 } else {
1800 struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1801 ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1802 offsetof(struct ubsec_dmachunk, d_ctx));
1803
1804 ctx->pc_flags = flags;
1805 ctx->pc_offset = htole16(coffset >> 2);
1806 for (i = 0; i < 6; i++)
1807 ctx->pc_deskey[i] = key.ses_key[i];
1808 for (i = 0; i < 5; i++)
1809 ctx->pc_hminner[i] = key.ses_hminner[i];
1810 for (i = 0; i < 5; i++)
1811 ctx->pc_hmouter[i] = key.ses_hmouter[i];
1812 for (i = 0; i < 2; i++)
1813 ctx->pc_iv[i] = key.ses_iv[i];
1814 }
1815
1816 mutex_spin_enter(&sc->sc_mtx);
1817 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1818 sc->sc_nqueue++;
1819 ubsecstats.hst_ipackets++;
1820 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1821 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1822 ubsec_feed(sc);
1823 mutex_spin_exit(&sc->sc_mtx);
1824 return (0);
1825
1826errout:
1827 if (q != NULL) {
1828 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1829 m_freem(q->q_dst_m);
1830
1831 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1832 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1833 }
1834 if (q->q_src_map != NULL) {
1835 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1836 }
1837
1838 mutex_spin_enter(&sc->sc_mtx);
1839 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1840 mutex_spin_exit(&sc->sc_mtx);
1841 }
1842#if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1843 if (err == EINVAL)
1844 ubsecstats.hst_invalid++;
1845 else
1846 ubsecstats.hst_nomem++;
1847#endif
1848 if (err != ERESTART) {
1849 crp->crp_etype = err;
1850 crypto_done(crp);
1851 } else {
1852 sc->sc_needwakeup |= CRYPTO_SYMQ;
1853 }
1854 return (err);
1855}
1856
1857static void
1858ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1859{
1860 struct cryptop *crp = (struct cryptop *)q->q_crp;
1861 struct cryptodesc *crd;
1862 struct ubsec_dma *dmap = q->q_dma;
1863
1864 ubsecstats.hst_opackets++;
1865 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1866
1867 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1868 dmap->d_alloc.dma_map->dm_mapsize,
1869 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1870 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1871 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1872 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1873 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1874 }
1875 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1876 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1877 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1878
1879 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1880 m_freem(q->q_src_m);
1881 crp->crp_buf = (void *)q->q_dst_m;
1882 }
1883
1884 /* copy out IV for future use */
1885 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1886 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1887 if (crd->crd_alg != CRYPTO_DES_CBC &&
1888 crd->crd_alg != CRYPTO_3DES_CBC &&
1889 crd->crd_alg != CRYPTO_AES_CBC)
1890 continue;
1891 if (crp->crp_flags & CRYPTO_F_IMBUF)
1892 m_copydata((struct mbuf *)crp->crp_buf,
1893 crd->crd_skip + crd->crd_len - 8, 8,
1894 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1895 else if (crp->crp_flags & CRYPTO_F_IOV) {
1896 cuio_copydata((struct uio *)crp->crp_buf,
1897 crd->crd_skip + crd->crd_len - 8, 8,
1898 (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1899 }
1900 break;
1901 }
1902 }
1903
1904 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1905 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1906 crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1907 continue;
1908 if (crp->crp_flags & CRYPTO_F_IMBUF)
1909 m_copyback((struct mbuf *)crp->crp_buf,
1910 crd->crd_inject, 12,
1911 (void *)dmap->d_dma->d_macbuf);
1912 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1913 bcopy((void *)dmap->d_dma->d_macbuf,
1914 crp->crp_mac, 12);
1915 break;
1916 }
1917 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1918 crypto_done(crp);
1919}
1920
1921static void
1922ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1923{
1924 int i, j, dlen, slen;
1925 char *dptr, *sptr;
1926
1927 j = 0;
1928 sptr = srcm->m_data;
1929 slen = srcm->m_len;
1930 dptr = dstm->m_data;
1931 dlen = dstm->m_len;
1932
1933 while (1) {
1934 for (i = 0; i < min(slen, dlen); i++) {
1935 if (j < hoffset || j >= toffset)
1936 *dptr++ = *sptr++;
1937 slen--;
1938 dlen--;
1939 j++;
1940 }
1941 if (slen == 0) {
1942 srcm = srcm->m_next;
1943 if (srcm == NULL)
1944 return;
1945 sptr = srcm->m_data;
1946 slen = srcm->m_len;
1947 }
1948 if (dlen == 0) {
1949 dstm = dstm->m_next;
1950 if (dstm == NULL)
1951 return;
1952 dptr = dstm->m_data;
1953 dlen = dstm->m_len;
1954 }
1955 }
1956}
1957
1958/*
1959 * feed the key generator, must be called at splnet() or higher.
1960 */
1961static void
1962ubsec_feed2(struct ubsec_softc *sc)
1963{
1964 struct ubsec_q2 *q;
1965
1966 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1967 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1968 break;
1969 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1970
1971 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1972 q->q_mcr.dma_map->dm_mapsize,
1973 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1974 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1975 q->q_ctx.dma_map->dm_mapsize,
1976 BUS_DMASYNC_PREWRITE);
1977
1978 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1979 q = SIMPLEQ_FIRST(&sc->sc_queue2);
1980 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1981 --sc->sc_nqueue2;
1982 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1983 }
1984}
1985
1986/*
1987 * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1988 */
1989void
1990ubsec_feed4(struct ubsec_softc *sc)
1991{
1992 struct ubsec_q2 *q;
1993
1994 while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1995 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1996 break;
1997 q = SIMPLEQ_FIRST(&sc->sc_queue4);
1998
1999 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
2000 q->q_mcr.dma_map->dm_mapsize,
2001 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2002 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2003 q->q_ctx.dma_map->dm_mapsize,
2004 BUS_DMASYNC_PREWRITE);
2005
2006 WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
2007 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
2008 --sc->sc_nqueue4;
2009 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
2010 }
2011}
2012
2013/*
2014 * Callback for handling random numbers
2015 */
2016static void
2017ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
2018{
2019 struct cryptkop *krp;
2020 struct ubsec_ctx_keyop *ctx;
2021
2022 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
2023 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2024 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2025
2026 switch (q->q_type) {
2027#ifndef UBSEC_NO_RNG
2028 case UBS_CTXOP_RNGSHA1:
2029 case UBS_CTXOP_RNGBYPASS: {
2030 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
2031 u_int32_t *p;
2032 int i;
2033
2034 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2035 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2036 p = (u_int32_t *)rng->rng_buf.dma_vaddr;
2037#ifndef __NetBSD__
2038 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
2039 add_true_randomness(letoh32(*p));
2040#else
2041 i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
2042 rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
2043 sc->sc_rng_need -= i;
2044#endif
2045 rng->rng_used = 0;
2046#ifdef __OpenBSD__
2047 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2048#else
2049 if (sc->sc_rng_need > 0) {
2050 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2051 }
2052#endif
2053 break;
2054 }
2055#endif
2056 case UBS_CTXOP_MODEXP: {
2057 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2058 u_int rlen, clen;
2059
2060 krp = me->me_krp;
2061 rlen = (me->me_modbits + 7) / 8;
2062 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
2063
2064 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2065 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2066 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2067 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2068 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2069 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2070 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2071 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2072
2073 if (clen < rlen)
2074 krp->krp_status = E2BIG;
2075 else {
2076 if (sc->sc_flags & UBS_FLAGS_HWNORM) {
2077 memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
2078 (krp->krp_param[krp->krp_iparams].crp_nbits
2079 + 7) / 8);
2080 bcopy(me->me_C.dma_vaddr,
2081 krp->krp_param[krp->krp_iparams].crp_p,
2082 (me->me_modbits + 7) / 8);
2083 } else
2084 ubsec_kshift_l(me->me_shiftbits,
2085 me->me_C.dma_vaddr, me->me_normbits,
2086 krp->krp_param[krp->krp_iparams].crp_p,
2087 krp->krp_param[krp->krp_iparams].crp_nbits);
2088 }
2089
2090 crypto_kdone(krp);
2091
2092 /* bzero all potentially sensitive data */
2093 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2094 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2095 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2096 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2097
2098 /* Can't free here, so put us on the free list. */
2099 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
2100 break;
2101 }
2102 case UBS_CTXOP_RSAPRIV: {
2103 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2104 u_int len;
2105
2106 krp = rp->rpr_krp;
2107 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2108 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2109 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2110 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2111
2112 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
2113 / 8;
2114 bcopy(rp->rpr_msgout.dma_vaddr,
2115 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2116
2117 crypto_kdone(krp);
2118
2119 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2120 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2121 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2122
2123 /* Can't free here, so put us on the free list. */
2124 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2125 break;
2126 }
2127 default:
2128 printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2129 letoh16(ctx->ctx_op));
2130 break;
2131 }
2132}
2133
2134#ifndef UBSEC_NO_RNG
2135
2136static void
2137ubsec_rng_get(size_t bytes, void *vsc)
2138{
2139 struct ubsec_softc *sc = vsc;
2140
2141 mutex_spin_enter(&sc->sc_mtx);
2142 sc->sc_rng_need = bytes;
2143 ubsec_rng_locked(sc);
2144 mutex_spin_exit(&sc->sc_mtx);
2145
2146}
2147
2148static void
2149ubsec_rng(void *vsc)
2150{
2151 struct ubsec_softc *sc = vsc;
2152 mutex_spin_enter(&sc->sc_mtx);
2153 ubsec_rng_locked(sc);
2154 mutex_spin_exit(&sc->sc_mtx);
2155}
2156
2157static void
2158ubsec_rng_locked(void *vsc)
2159{
2160 struct ubsec_softc *sc = vsc;
2161 struct ubsec_q2_rng *rng = &sc->sc_rng;
2162 struct ubsec_mcr *mcr;
2163 struct ubsec_ctx_rngbypass *ctx;
2164 int *nqueue;
2165
2166 /* Caller is responsible to lock and release sc_mtx. */
2167 KASSERT(mutex_owned(&sc->sc_mtx));
2168
2169 if (rng->rng_used) {
2170 return;
2171 }
2172
2173 if (sc->sc_rng_need < 1) {
2174 callout_stop(&sc->sc_rngto);
2175 return;
2176 }
2177
2178 if (sc->sc_flags & UBS_FLAGS_RNG4)
2179 nqueue = &sc->sc_nqueue4;
2180 else
2181 nqueue = &sc->sc_nqueue2;
2182
2183 (*nqueue)++;
2184 if (*nqueue >= UBS_MAX_NQUEUE)
2185 goto out;
2186
2187 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2188 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2189
2190 mcr->mcr_pkts = htole16(1);
2191 mcr->mcr_flags = 0;
2192 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2193 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2194 mcr->mcr_ipktbuf.pb_len = 0;
2195 mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2196 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2197 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2198 UBS_PKTBUF_LEN);
2199 mcr->mcr_opktbuf.pb_next = 0;
2200
2201 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2202 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2203 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2204
2205 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2206 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2207
2208 if (sc->sc_flags & UBS_FLAGS_RNG4) {
2209 SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2210 ubsec_feed4(sc);
2211 } else {
2212 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2213 ubsec_feed2(sc);
2214 }
2215 rng->rng_used = 1;
2216 ubsecstats.hst_rng++;
2217
2218 return;
2219
2220out:
2221 /*
2222 * Something weird happened, generate our own call back.
2223 */
2224 (*nqueue)--;
2225#ifdef __OpenBSD__
2226 timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2227#else
2228 callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2229#endif
2230}
2231#endif /* UBSEC_NO_RNG */
2232
2233static int
2234ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2235 struct ubsec_dma_alloc *dma,int mapflags)
2236{
2237 int r;
2238
2239 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2240 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2241 goto fail_0;
2242
2243 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2244 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2245 goto fail_1;
2246
2247 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2248 BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2249 goto fail_2;
2250
2251 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2252 size, NULL, BUS_DMA_NOWAIT)) != 0)
2253 goto fail_3;
2254
2255 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2256 dma->dma_size = size;
2257 return (0);
2258
2259fail_3:
2260 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2261fail_2:
2262 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2263fail_1:
2264 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2265fail_0:
2266 dma->dma_map = NULL;
2267 return (r);
2268}
2269
2270static void
2271ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2272{
2273 bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2274 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2275 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2276 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2277}
2278
2279/*
2280 * Resets the board. Values in the regesters are left as is
2281 * from the reset (i.e. initial values are assigned elsewhere).
2282 */
2283static void
2284ubsec_reset_board(struct ubsec_softc *sc)
2285{
2286 volatile u_int32_t ctrl;
2287
2288 ctrl = READ_REG(sc, BS_CTRL);
2289 ctrl |= BS_CTRL_RESET;
2290 WRITE_REG(sc, BS_CTRL, ctrl);
2291
2292 /*
2293 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2294 */
2295 DELAY(10);
2296
2297 /* Enable RNG and interrupts on newer devices */
2298 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2299#ifndef UBSEC_NO_RNG
2300 WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2301#endif
2302 WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2303 }
2304}
2305
2306/*
2307 * Init Broadcom registers
2308 */
2309static void
2310ubsec_init_board(struct ubsec_softc *sc)
2311{
2312 u_int32_t ctrl;
2313
2314 ctrl = READ_REG(sc, BS_CTRL);
2315 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2316 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2317
2318 /*
2319 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2320 * anyone got hw docs?
2321 */
2322 if (sc->sc_flags & UBS_FLAGS_KEY)
2323 ctrl |= BS_CTRL_MCR2INT;
2324 else
2325 ctrl &= ~BS_CTRL_MCR2INT;
2326
2327 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2328 ctrl &= ~BS_CTRL_SWNORM;
2329
2330 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2331 ctrl |= BS_CTRL_BSIZE240;
2332 ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2333
2334 if (sc->sc_flags & UBS_FLAGS_RNG4)
2335 ctrl |= BS_CTRL_MCR4INT;
2336 else
2337 ctrl &= ~BS_CTRL_MCR4INT;
2338 }
2339
2340 WRITE_REG(sc, BS_CTRL, ctrl);
2341}
2342
2343/*
2344 * Init Broadcom PCI registers
2345 */
2346static void
2347ubsec_init_pciregs(struct pci_attach_args *pa)
2348{
2349 pci_chipset_tag_t pc = pa->pa_pc;
2350 u_int32_t misc;
2351
2352 /*
2353 * This will set the cache line size to 1, this will
2354 * force the BCM58xx chip just to do burst read/writes.
2355 * Cache line read/writes are to slow
2356 */
2357 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2358 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2359 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2360 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2361}
2362
2363/*
2364 * Clean up after a chip crash.
2365 * It is assumed that the caller in splnet()
2366 */
2367static void
2368ubsec_cleanchip(struct ubsec_softc *sc)
2369{
2370 struct ubsec_q *q;
2371
2372 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2373 q = SIMPLEQ_FIRST(&sc->sc_qchip);
2374 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2375 ubsec_free_q(sc, q);
2376 }
2377 sc->sc_nqchip = 0;
2378}
2379
2380/*
2381 * free a ubsec_q
2382 * It is assumed that the caller is within splnet()
2383 */
2384static int
2385ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2386{
2387 struct ubsec_q *q2;
2388 struct cryptop *crp;
2389 int npkts;
2390 int i;
2391
2392 npkts = q->q_nstacked_mcrs;
2393
2394 for (i = 0; i < npkts; i++) {
2395 if(q->q_stacked_mcr[i]) {
2396 q2 = q->q_stacked_mcr[i];
2397
2398 if ((q2->q_dst_m != NULL)
2399 && (q2->q_src_m != q2->q_dst_m))
2400 m_freem(q2->q_dst_m);
2401
2402 crp = (struct cryptop *)q2->q_crp;
2403
2404 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2405
2406 crp->crp_etype = EFAULT;
2407 crypto_done(crp);
2408 } else {
2409 break;
2410 }
2411 }
2412
2413 /*
2414 * Free header MCR
2415 */
2416 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2417 m_freem(q->q_dst_m);
2418
2419 crp = (struct cryptop *)q->q_crp;
2420
2421 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2422
2423 crp->crp_etype = EFAULT;
2424 crypto_done(crp);
2425 return(0);
2426}
2427
2428/*
2429 * Routine to reset the chip and clean up.
2430 * It is assumed that the caller is in splnet()
2431 */
2432static void
2433ubsec_totalreset(struct ubsec_softc *sc)
2434{
2435 ubsec_reset_board(sc);
2436 ubsec_init_board(sc);
2437 ubsec_cleanchip(sc);
2438}
2439
2440static int
2441ubsec_dmamap_aligned(bus_dmamap_t map)
2442{
2443 int i;
2444
2445 for (i = 0; i < map->dm_nsegs; i++) {
2446 if (map->dm_segs[i].ds_addr & 3)
2447 return (0);
2448 if ((i != (map->dm_nsegs - 1)) &&
2449 (map->dm_segs[i].ds_len & 3))
2450 return (0);
2451 }
2452 return (1);
2453}
2454
2455#ifdef __OpenBSD__
2456struct ubsec_softc *
2457ubsec_kfind(struct cryptkop *krp)
2458{
2459 struct ubsec_softc *sc;
2460 int i;
2461
2462 for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2463 sc = ubsec_cd.cd_devs[i];
2464 if (sc == NULL)
2465 continue;
2466 if (sc->sc_cid == krp->krp_hid)
2467 return (sc);
2468 }
2469 return (NULL);
2470}
2471#endif
2472
2473static void
2474ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2475{
2476 switch (q->q_type) {
2477 case UBS_CTXOP_MODEXP: {
2478 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2479
2480 ubsec_dma_free(sc, &me->me_q.q_mcr);
2481 ubsec_dma_free(sc, &me->me_q.q_ctx);
2482 ubsec_dma_free(sc, &me->me_M);
2483 ubsec_dma_free(sc, &me->me_E);
2484 ubsec_dma_free(sc, &me->me_C);
2485 ubsec_dma_free(sc, &me->me_epb);
2486 free(me, M_DEVBUF);
2487 break;
2488 }
2489 case UBS_CTXOP_RSAPRIV: {
2490 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2491
2492 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2493 ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2494 ubsec_dma_free(sc, &rp->rpr_msgin);
2495 ubsec_dma_free(sc, &rp->rpr_msgout);
2496 free(rp, M_DEVBUF);
2497 break;
2498 }
2499 default:
2500 printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2501 q->q_type);
2502 break;
2503 }
2504}
2505
2506static int
2507ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2508{
2509 struct ubsec_softc *sc;
2510 int r;
2511
2512 if (krp == NULL || krp->krp_callback == NULL)
2513 return (EINVAL);
2514#ifdef __OpenBSD__
2515 if ((sc = ubsec_kfind(krp)) == NULL)
2516 return (EINVAL);
2517#else
2518 sc = arg;
2519 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2520#endif
2521
2522 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2523 struct ubsec_q2 *q;
2524
2525 q = SIMPLEQ_FIRST(&sc->sc_q2free);
2526 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2527 ubsec_kfree(sc, q);
2528 }
2529
2530 switch (krp->krp_op) {
2531 case CRK_MOD_EXP:
2532 if (sc->sc_flags & UBS_FLAGS_HWNORM)
2533 r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2534 else
2535 r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2536 break;
2537 case CRK_MOD_EXP_CRT:
2538 r = ubsec_kprocess_rsapriv(sc, krp, hint);
2539 break;
2540 default:
2541 printf("%s: kprocess: invalid op 0x%x\n",
2542 device_xname(sc->sc_dev), krp->krp_op);
2543 krp->krp_status = EOPNOTSUPP;
2544 crypto_kdone(krp);
2545 r = 0;
2546 }
2547 return (r);
2548}
2549
2550/*
2551 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2552 */
2553static int
2554ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2555 int hint)
2556{
2557 struct ubsec_q2_modexp *me;
2558 struct ubsec_mcr *mcr;
2559 struct ubsec_ctx_modexp *ctx;
2560 struct ubsec_pktbuf *epb;
2561 int err = 0;
2562 u_int nbits, normbits, mbits, shiftbits, ebits;
2563
2564 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2565 if (me == NULL) {
2566 err = ENOMEM;
2567 goto errout;
2568 }
2569 memset(me, 0, sizeof *me);
2570 me->me_krp = krp;
2571 me->me_q.q_type = UBS_CTXOP_MODEXP;
2572
2573 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2574 if (nbits <= 512)
2575 normbits = 512;
2576 else if (nbits <= 768)
2577 normbits = 768;
2578 else if (nbits <= 1024)
2579 normbits = 1024;
2580 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2581 normbits = 1536;
2582 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2583 normbits = 2048;
2584 else {
2585 err = E2BIG;
2586 goto errout;
2587 }
2588
2589 shiftbits = normbits - nbits;
2590
2591 me->me_modbits = nbits;
2592 me->me_shiftbits = shiftbits;
2593 me->me_normbits = normbits;
2594
2595 /* Sanity check: result bits must be >= true modulus bits. */
2596 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2597 err = ERANGE;
2598 goto errout;
2599 }
2600
2601 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2602 &me->me_q.q_mcr, 0)) {
2603 err = ENOMEM;
2604 goto errout;
2605 }
2606 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2607
2608 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2609 &me->me_q.q_ctx, 0)) {
2610 err = ENOMEM;
2611 goto errout;
2612 }
2613
2614 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2615 if (mbits > nbits) {
2616 err = E2BIG;
2617 goto errout;
2618 }
2619 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2620 err = ENOMEM;
2621 goto errout;
2622 }
2623 ubsec_kshift_r(shiftbits,
2624 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2625 me->me_M.dma_vaddr, normbits);
2626
2627 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2628 err = ENOMEM;
2629 goto errout;
2630 }
2631 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2632
2633 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2634 if (ebits > nbits) {
2635 err = E2BIG;
2636 goto errout;
2637 }
2638 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2639 err = ENOMEM;
2640 goto errout;
2641 }
2642 ubsec_kshift_r(shiftbits,
2643 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2644 me->me_E.dma_vaddr, normbits);
2645
2646 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2647 &me->me_epb, 0)) {
2648 err = ENOMEM;
2649 goto errout;
2650 }
2651 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2652 epb->pb_addr = htole32(me->me_E.dma_paddr);
2653 epb->pb_next = 0;
2654 epb->pb_len = htole32(normbits / 8);
2655
2656#ifdef UBSEC_DEBUG
2657 if (ubsec_debug) {
2658 printf("Epb ");
2659 ubsec_dump_pb(epb);
2660 }
2661#endif
2662
2663 mcr->mcr_pkts = htole16(1);
2664 mcr->mcr_flags = 0;
2665 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2666 mcr->mcr_reserved = 0;
2667 mcr->mcr_pktlen = 0;
2668
2669 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2670 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2671 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2672
2673 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2674 mcr->mcr_opktbuf.pb_next = 0;
2675 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2676
2677#ifdef DIAGNOSTIC
2678 /* Misaligned output buffer will hang the chip. */
2679 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2680 panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2681 letoh32(mcr->mcr_opktbuf.pb_addr));
2682 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2683 panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2684 letoh32(mcr->mcr_opktbuf.pb_len));
2685#endif
2686
2687 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2688 memset(ctx, 0, sizeof(*ctx));
2689 ubsec_kshift_r(shiftbits,
2690 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2691 ctx->me_N, normbits);
2692 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2693 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2694 ctx->me_E_len = htole16(nbits);
2695 ctx->me_N_len = htole16(nbits);
2696
2697#ifdef UBSEC_DEBUG
2698 if (ubsec_debug) {
2699 ubsec_dump_mcr(mcr);
2700 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2701 }
2702#endif
2703
2704 /*
2705 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2706 * everything else.
2707 */
2708 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2709 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2710 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2711 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2712 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2713 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2714 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2715 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2716
2717 /* Enqueue and we're done... */
2718 mutex_spin_enter(&sc->sc_mtx);
2719 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2720 ubsec_feed2(sc);
2721 ubsecstats.hst_modexp++;
2722 mutex_spin_exit(&sc->sc_mtx);
2723
2724 return (0);
2725
2726errout:
2727 if (me != NULL) {
2728 if (me->me_q.q_mcr.dma_map != NULL)
2729 ubsec_dma_free(sc, &me->me_q.q_mcr);
2730 if (me->me_q.q_ctx.dma_map != NULL) {
2731 memset(me->me_q.q_ctx.dma_vaddr, 0,
2732 me->me_q.q_ctx.dma_size);
2733 ubsec_dma_free(sc, &me->me_q.q_ctx);
2734 }
2735 if (me->me_M.dma_map != NULL) {
2736 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2737 ubsec_dma_free(sc, &me->me_M);
2738 }
2739 if (me->me_E.dma_map != NULL) {
2740 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2741 ubsec_dma_free(sc, &me->me_E);
2742 }
2743 if (me->me_C.dma_map != NULL) {
2744 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2745 ubsec_dma_free(sc, &me->me_C);
2746 }
2747 if (me->me_epb.dma_map != NULL)
2748 ubsec_dma_free(sc, &me->me_epb);
2749 free(me, M_DEVBUF);
2750 }
2751 krp->krp_status = err;
2752 crypto_kdone(krp);
2753 return (0);
2754}
2755
2756/*
2757 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2758 */
2759static int
2760ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2761 int hint)
2762{
2763 struct ubsec_q2_modexp *me;
2764 struct ubsec_mcr *mcr;
2765 struct ubsec_ctx_modexp *ctx;
2766 struct ubsec_pktbuf *epb;
2767 int err = 0;
2768 u_int nbits, normbits, mbits, shiftbits, ebits;
2769
2770 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2771 if (me == NULL) {
2772 err = ENOMEM;
2773 goto errout;
2774 }
2775 memset(me, 0, sizeof *me);
2776 me->me_krp = krp;
2777 me->me_q.q_type = UBS_CTXOP_MODEXP;
2778
2779 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2780 if (nbits <= 512)
2781 normbits = 512;
2782 else if (nbits <= 768)
2783 normbits = 768;
2784 else if (nbits <= 1024)
2785 normbits = 1024;
2786 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2787 normbits = 1536;
2788 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2789 normbits = 2048;
2790 else {
2791 err = E2BIG;
2792 goto errout;
2793 }
2794
2795 shiftbits = normbits - nbits;
2796
2797 /* XXX ??? */
2798 me->me_modbits = nbits;
2799 me->me_shiftbits = shiftbits;
2800 me->me_normbits = normbits;
2801
2802 /* Sanity check: result bits must be >= true modulus bits. */
2803 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2804 err = ERANGE;
2805 goto errout;
2806 }
2807
2808 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2809 &me->me_q.q_mcr, 0)) {
2810 err = ENOMEM;
2811 goto errout;
2812 }
2813 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2814
2815 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2816 &me->me_q.q_ctx, 0)) {
2817 err = ENOMEM;
2818 goto errout;
2819 }
2820
2821 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2822 if (mbits > nbits) {
2823 err = E2BIG;
2824 goto errout;
2825 }
2826 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2827 err = ENOMEM;
2828 goto errout;
2829 }
2830 memset(me->me_M.dma_vaddr, 0, normbits / 8);
2831 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2832 me->me_M.dma_vaddr, (mbits + 7) / 8);
2833
2834 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2835 err = ENOMEM;
2836 goto errout;
2837 }
2838 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2839
2840 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2841 if (ebits > nbits) {
2842 err = E2BIG;
2843 goto errout;
2844 }
2845 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2846 err = ENOMEM;
2847 goto errout;
2848 }
2849 memset(me->me_E.dma_vaddr, 0, normbits / 8);
2850 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2851 me->me_E.dma_vaddr, (ebits + 7) / 8);
2852
2853 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2854 &me->me_epb, 0)) {
2855 err = ENOMEM;
2856 goto errout;
2857 }
2858 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2859 epb->pb_addr = htole32(me->me_E.dma_paddr);
2860 epb->pb_next = 0;
2861 epb->pb_len = htole32((ebits + 7) / 8);
2862
2863#ifdef UBSEC_DEBUG
2864 if (ubsec_debug) {
2865 printf("Epb ");
2866 ubsec_dump_pb(epb);
2867 }
2868#endif
2869
2870 mcr->mcr_pkts = htole16(1);
2871 mcr->mcr_flags = 0;
2872 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2873 mcr->mcr_reserved = 0;
2874 mcr->mcr_pktlen = 0;
2875
2876 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2877 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2878 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2879
2880 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2881 mcr->mcr_opktbuf.pb_next = 0;
2882 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2883
2884#ifdef DIAGNOSTIC
2885 /* Misaligned output buffer will hang the chip. */
2886 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2887 panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2888 letoh32(mcr->mcr_opktbuf.pb_addr));
2889 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2890 panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2891 letoh32(mcr->mcr_opktbuf.pb_len));
2892#endif
2893
2894 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2895 memset(ctx, 0, sizeof(*ctx));
2896 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2897 (nbits + 7) / 8);
2898 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2899 ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2900 ctx->me_E_len = htole16(ebits);
2901 ctx->me_N_len = htole16(nbits);
2902
2903#ifdef UBSEC_DEBUG
2904 if (ubsec_debug) {
2905 ubsec_dump_mcr(mcr);
2906 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2907 }
2908#endif
2909
2910 /*
2911 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2912 * everything else.
2913 */
2914 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2915 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2916 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2917 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2918 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2919 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2920 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2921 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2922
2923 /* Enqueue and we're done... */
2924 mutex_spin_enter(&sc->sc_mtx);
2925 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2926 ubsec_feed2(sc);
2927 mutex_spin_exit(&sc->sc_mtx);
2928
2929 return (0);
2930
2931errout:
2932 if (me != NULL) {
2933 if (me->me_q.q_mcr.dma_map != NULL)
2934 ubsec_dma_free(sc, &me->me_q.q_mcr);
2935 if (me->me_q.q_ctx.dma_map != NULL) {
2936 memset(me->me_q.q_ctx.dma_vaddr, 0,
2937 me->me_q.q_ctx.dma_size);
2938 ubsec_dma_free(sc, &me->me_q.q_ctx);
2939 }
2940 if (me->me_M.dma_map != NULL) {
2941 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2942 ubsec_dma_free(sc, &me->me_M);
2943 }
2944 if (me->me_E.dma_map != NULL) {
2945 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2946 ubsec_dma_free(sc, &me->me_E);
2947 }
2948 if (me->me_C.dma_map != NULL) {
2949 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2950 ubsec_dma_free(sc, &me->me_C);
2951 }
2952 if (me->me_epb.dma_map != NULL)
2953 ubsec_dma_free(sc, &me->me_epb);
2954 free(me, M_DEVBUF);
2955 }
2956 krp->krp_status = err;
2957 crypto_kdone(krp);
2958 return (0);
2959}
2960
2961static int
2962ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2963 int hint)
2964{
2965 struct ubsec_q2_rsapriv *rp = NULL;
2966 struct ubsec_mcr *mcr;
2967 struct ubsec_ctx_rsapriv *ctx;
2968 int err = 0;
2969 u_int padlen, msglen;
2970
2971 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2972 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2973 if (msglen > padlen)
2974 padlen = msglen;
2975
2976 if (padlen <= 256)
2977 padlen = 256;
2978 else if (padlen <= 384)
2979 padlen = 384;
2980 else if (padlen <= 512)
2981 padlen = 512;
2982 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2983 padlen = 768;
2984 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2985 padlen = 1024;
2986 else {
2987 err = E2BIG;
2988 goto errout;
2989 }
2990
2991 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2992 err = E2BIG;
2993 goto errout;
2994 }
2995
2996 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2997 err = E2BIG;
2998 goto errout;
2999 }
3000
3001 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
3002 err = E2BIG;
3003 goto errout;
3004 }
3005
3006 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
3007 if (rp == NULL)
3008 return (ENOMEM);
3009 rp->rpr_krp = krp;
3010 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
3011
3012 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
3013 &rp->rpr_q.q_mcr, 0)) {
3014 err = ENOMEM;
3015 goto errout;
3016 }
3017 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
3018
3019 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
3020 &rp->rpr_q.q_ctx, 0)) {
3021 err = ENOMEM;
3022 goto errout;
3023 }
3024 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
3025 memset(ctx, 0, sizeof *ctx);
3026
3027 /* Copy in p */
3028 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
3029 &ctx->rpr_buf[0 * (padlen / 8)],
3030 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
3031
3032 /* Copy in q */
3033 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
3034 &ctx->rpr_buf[1 * (padlen / 8)],
3035 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
3036
3037 /* Copy in dp */
3038 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
3039 &ctx->rpr_buf[2 * (padlen / 8)],
3040 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
3041
3042 /* Copy in dq */
3043 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
3044 &ctx->rpr_buf[3 * (padlen / 8)],
3045 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
3046
3047 /* Copy in pinv */
3048 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
3049 &ctx->rpr_buf[4 * (padlen / 8)],
3050 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
3051
3052 msglen = padlen * 2;
3053
3054 /* Copy in input message (aligned buffer/length). */
3055 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
3056 /* Is this likely? */
3057 err = E2BIG;
3058 goto errout;
3059 }
3060 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
3061 err = ENOMEM;
3062 goto errout;
3063 }
3064 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
3065 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
3066 rp->rpr_msgin.dma_vaddr,
3067 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
3068
3069 /* Prepare space for output message (aligned buffer/length). */
3070 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
3071 /* Is this likely? */
3072 err = E2BIG;
3073 goto errout;
3074 }
3075 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
3076 err = ENOMEM;
3077 goto errout;
3078 }
3079 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
3080
3081 mcr->mcr_pkts = htole16(1);
3082 mcr->mcr_flags = 0;
3083 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
3084 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
3085 mcr->mcr_ipktbuf.pb_next = 0;
3086 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
3087 mcr->mcr_reserved = 0;
3088 mcr->mcr_pktlen = htole16(msglen);
3089 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
3090 mcr->mcr_opktbuf.pb_next = 0;
3091 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
3092
3093#ifdef DIAGNOSTIC
3094 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
3095 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
3096 device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
3097 (u_long) rp->rpr_msgin.dma_size);
3098 }
3099 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
3100 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
3101 device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
3102 (u_long) rp->rpr_msgout.dma_size);
3103 }
3104#endif
3105
3106 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
3107 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
3108 ctx->rpr_q_len = htole16(padlen);
3109 ctx->rpr_p_len = htole16(padlen);
3110
3111 /*
3112 * ubsec_feed2 will sync mcr and ctx, we just need to sync
3113 * everything else.
3114 */
3115 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
3116 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3117 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
3118 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
3119
3120 /* Enqueue and we're done... */
3121 mutex_spin_enter(&sc->sc_mtx);
3122 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
3123 ubsec_feed2(sc);
3124 ubsecstats.hst_modexpcrt++;
3125 mutex_spin_exit(&sc->sc_mtx);
3126 return (0);
3127
3128errout:
3129 if (rp != NULL) {
3130 if (rp->rpr_q.q_mcr.dma_map != NULL)
3131 ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
3132 if (rp->rpr_msgin.dma_map != NULL) {
3133 memset(rp->rpr_msgin.dma_vaddr, 0,
3134 rp->rpr_msgin.dma_size);
3135 ubsec_dma_free(sc, &rp->rpr_msgin);
3136 }
3137 if (rp->rpr_msgout.dma_map != NULL) {
3138 memset(rp->rpr_msgout.dma_vaddr, 0,
3139 rp->rpr_msgout.dma_size);
3140 ubsec_dma_free(sc, &rp->rpr_msgout);
3141 }
3142 free(rp, M_DEVBUF);
3143 }
3144 krp->krp_status = err;
3145 crypto_kdone(krp);
3146 return (0);
3147}
3148
3149#ifdef UBSEC_DEBUG
3150static void
3151ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3152{
3153 printf("addr 0x%x (0x%x) next 0x%x\n",
3154 pb->pb_addr, pb->pb_len, pb->pb_next);
3155}
3156
3157static void
3158ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3159{
3160 printf("CTX (0x%x):\n", c->ctx_len);
3161 switch (letoh16(c->ctx_op)) {
3162 case UBS_CTXOP_RNGBYPASS:
3163 case UBS_CTXOP_RNGSHA1:
3164 break;
3165 case UBS_CTXOP_MODEXP:
3166 {
3167 struct ubsec_ctx_modexp *cx = (void *)c;
3168 int i, len;
3169
3170 printf(" Elen %u, Nlen %u\n",
3171 letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3172 len = (cx->me_N_len + 7)/8;
3173 for (i = 0; i < len; i++)
3174 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3175 printf("\n");
3176 break;
3177 }
3178 default:
3179 printf("unknown context: %x\n", c->ctx_op);
3180 }
3181 printf("END CTX\n");
3182}
3183
3184static void
3185ubsec_dump_mcr(struct ubsec_mcr *mcr)
3186{
3187 volatile struct ubsec_mcr_add *ma;
3188 int i;
3189
3190 printf("MCR:\n");
3191 printf(" pkts: %u, flags 0x%x\n",
3192 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3193 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3194 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3195 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3196 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3197 letoh16(ma->mcr_reserved));
3198 printf(" %d: ipkt ", i);
3199 ubsec_dump_pb(&ma->mcr_ipktbuf);
3200 printf(" %d: opkt ", i);
3201 ubsec_dump_pb(&ma->mcr_opktbuf);
3202 ma++;
3203 }
3204 printf("END MCR\n");
3205}
3206#endif /* UBSEC_DEBUG */
3207
3208/*
3209 * Return the number of significant bits of a big number.
3210 */
3211static int
3212ubsec_ksigbits(struct crparam *cr)
3213{
3214 u_int plen = (cr->crp_nbits + 7) / 8;
3215 int i, sig = plen * 8;
3216 u_int8_t c, *p = cr->crp_p;
3217
3218 for (i = plen - 1; i >= 0; i--) {
3219 c = p[i];
3220 if (c != 0) {
3221 while ((c & 0x80) == 0) {
3222 sig--;
3223 c <<= 1;
3224 }
3225 break;
3226 }
3227 sig -= 8;
3228 }
3229 return (sig);
3230}
3231
3232static void
3233ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3234 u_int8_t *dst, u_int dstbits)
3235{
3236 u_int slen, dlen;
3237 int i, si, di, n;
3238
3239 slen = (srcbits + 7) / 8;
3240 dlen = (dstbits + 7) / 8;
3241
3242 for (i = 0; i < slen; i++)
3243 dst[i] = src[i];
3244 for (i = 0; i < dlen - slen; i++)
3245 dst[slen + i] = 0;
3246
3247 n = shiftbits / 8;
3248 if (n != 0) {
3249 si = dlen - n - 1;
3250 di = dlen - 1;
3251 while (si >= 0)
3252 dst[di--] = dst[si--];
3253 while (di >= 0)
3254 dst[di--] = 0;
3255 }
3256
3257 n = shiftbits % 8;
3258 if (n != 0) {
3259 for (i = dlen - 1; i > 0; i--)
3260 dst[i] = (dst[i] << n) |
3261 (dst[i - 1] >> (8 - n));
3262 dst[0] = dst[0] << n;
3263 }
3264}
3265
3266static void
3267ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3268 u_int8_t *dst, u_int dstbits)
3269{
3270 int slen, dlen, i, n;
3271
3272 slen = (srcbits + 7) / 8;
3273 dlen = (dstbits + 7) / 8;
3274
3275 n = shiftbits / 8;
3276 for (i = 0; i < slen; i++)
3277 dst[i] = src[i + n];
3278 for (i = 0; i < dlen - slen; i++)
3279 dst[slen + i] = 0;
3280
3281 n = shiftbits % 8;
3282 if (n != 0) {
3283 for (i = 0; i < (dlen - 1); i++)
3284 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3285 dst[dlen - 1] = dst[dlen - 1] >> n;
3286 }
3287}
3288