/* $NetBSD: ffs_vfsops.c,v 1.378.2.4 2025/01/07 16:13:35 martin Exp $ */ /*- * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Wasabi Systems, Inc, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 */ #include __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.378.2.4 2025/01/07 16:13:35 martin Exp $"); #if defined(_KERNEL_OPT) #include "opt_ffs.h" #include "opt_quota.h" #include "opt_wapbl.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef WAPBL MODULE(MODULE_CLASS_VFS, ffs, "ufs,wapbl"); #else MODULE(MODULE_CLASS_VFS, ffs, "ufs"); #endif static int ffs_vfs_fsync(vnode_t *, int); static int ffs_superblock_validate(struct fs *); static int ffs_is_appleufs(struct vnode *, struct fs *); static int ffs_init_vnode(struct ufsmount *, struct vnode *, ino_t); static void ffs_deinit_vnode(struct ufsmount *, struct vnode *); static kauth_listener_t ffs_snapshot_listener; /* how many times ffs_init() was called */ int ffs_initcount = 0; #ifdef DEBUG_FFS_MOUNT #define DPRINTF(_fmt, args...) printf("%s: " _fmt "\n", __func__, ##args) #else #define DPRINTF(_fmt, args...) do {} while (/*CONSTCOND*/0) #endif extern const struct vnodeopv_desc ffs_vnodeop_opv_desc; extern const struct vnodeopv_desc ffs_specop_opv_desc; extern const struct vnodeopv_desc ffs_fifoop_opv_desc; const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = { &ffs_vnodeop_opv_desc, &ffs_specop_opv_desc, &ffs_fifoop_opv_desc, NULL, }; struct vfsops ffs_vfsops = { .vfs_name = MOUNT_FFS, .vfs_min_mount_data = sizeof (struct ufs_args), .vfs_mount = ffs_mount, .vfs_start = ufs_start, .vfs_unmount = ffs_unmount, .vfs_root = ufs_root, .vfs_quotactl = ufs_quotactl, .vfs_statvfs = ffs_statvfs, .vfs_sync = ffs_sync, .vfs_vget = ufs_vget, .vfs_loadvnode = ffs_loadvnode, .vfs_newvnode = ffs_newvnode, .vfs_fhtovp = ffs_fhtovp, .vfs_vptofh = ffs_vptofh, .vfs_init = ffs_init, .vfs_reinit = ffs_reinit, .vfs_done = ffs_done, .vfs_mountroot = ffs_mountroot, .vfs_snapshot = ffs_snapshot, .vfs_extattrctl = ffs_extattrctl, .vfs_suspendctl = genfs_suspendctl, .vfs_renamelock_enter = genfs_renamelock_enter, .vfs_renamelock_exit = genfs_renamelock_exit, .vfs_fsync = ffs_vfs_fsync, .vfs_opv_descs = ffs_vnodeopv_descs }; static const struct genfs_ops ffs_genfsops = { .gop_size = ffs_gop_size, .gop_alloc = ufs_gop_alloc, .gop_write = genfs_gop_write, .gop_markupdate = ufs_gop_markupdate, .gop_putrange = genfs_gop_putrange, }; static const struct ufs_ops ffs_ufsops = { .uo_itimes = ffs_itimes, .uo_update = ffs_update, .uo_truncate = ffs_truncate, .uo_balloc = ffs_balloc, .uo_snapgone = ffs_snapgone, .uo_bufrd = ffs_bufrd, .uo_bufwr = ffs_bufwr, }; static int ffs_checkrange(struct mount *mp, ino_t ino) { struct fs *fs = VFSTOUFS(mp)->um_fs; if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) { DPRINTF("out of range %u\n", ino); return ESTALE; } /* * Need to check if inode is initialized because ffsv2 does * lazy initialization and we can get here from nfs_fhtovp */ if (fs->fs_magic != FS_UFS2_MAGIC) return 0; struct buf *bp; int cg = ino_to_cg(fs, ino); struct ufsmount *ump = VFSTOUFS(mp); int error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, B_MODIFY, &bp); if (error) { DPRINTF("error %d reading cg %d ino %u\n", error, cg, ino); return error; } const int needswap = UFS_FSNEEDSWAP(fs); struct cg *cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp, needswap)) { brelse(bp, 0); DPRINTF("bad cylinder group magic cg %d ino %u\n", cg, ino); return ESTALE; } int32_t initediblk = ufs_rw32(cgp->cg_initediblk, needswap); brelse(bp, 0); if (cg * fs->fs_ipg + initediblk < ino) { DPRINTF("cg=%d fs->fs_ipg=%d initediblk=%d ino=%u\n", cg, fs->fs_ipg, initediblk, ino); return ESTALE; } return 0; } static int ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, void *arg0, void *arg1, void *arg2, void *arg3) { vnode_t *vp = arg2; int result = KAUTH_RESULT_DEFER; if (action != KAUTH_SYSTEM_FS_SNAPSHOT) return result; if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred)) result = KAUTH_RESULT_ALLOW; return result; } SYSCTL_SETUP(ffs_sysctl_setup, "ffs sysctls") { #ifdef UFS_EXTATTR extern int ufs_extattr_autocreate; #endif extern int ffs_log_changeopt; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ffs", SYSCTL_DESCR("Berkeley Fast File System"), NULL, 0, NULL, 0, CTL_VFS, 1, CTL_EOL); /* * @@@ should we even bother with these first three? */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doclusterread", NULL, sysctl_notavail, 0, NULL, 0, CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doclusterwrite", NULL, sysctl_notavail, 0, NULL, 0, CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doreallocblks", NULL, sysctl_notavail, 0, NULL, 0, CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL); #if 0 sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doasyncfree", SYSCTL_DESCR("Release dirty blocks asynchronously"), NULL, 0, &doasyncfree, 0, CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "log_changeopt", SYSCTL_DESCR("Log changes in optimization strategy"), NULL, 0, &ffs_log_changeopt, 0, CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL); #ifdef UFS_EXTATTR sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "extattr_autocreate", SYSCTL_DESCR("Size of attribute for " "backing file autocreation"), NULL, 0, &ufs_extattr_autocreate, 0, CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL); #endif /* UFS_EXTATTR */ } static int ffs_modcmd(modcmd_t cmd, void *arg) { int error; #if 0 extern int doasyncfree; #endif switch (cmd) { case MODULE_CMD_INIT: error = vfs_attach(&ffs_vfsops); if (error != 0) break; ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM, ffs_snapshot_cb, NULL); if (ffs_snapshot_listener == NULL) printf("ffs_modcmd: can't listen on system scope.\n"); break; case MODULE_CMD_FINI: error = vfs_detach(&ffs_vfsops); if (error != 0) break; if (ffs_snapshot_listener != NULL) kauth_unlisten_scope(ffs_snapshot_listener); break; default: error = ENOTTY; break; } return (error); } pool_cache_t ffs_inode_cache; pool_cache_t ffs_dinode1_cache; pool_cache_t ffs_dinode2_cache; static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t); static void ffs_oldfscompat_write(struct fs *, struct ufsmount *); /* * Called by main() when ffs is going to be mounted as root. */ int ffs_mountroot(void) { struct fs *fs; struct mount *mp; struct lwp *l = curlwp; /* XXX */ struct ufsmount *ump; int error; if (device_class(root_device) != DV_DISK) return (ENODEV); if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) { vrele(rootvp); return (error); } /* * We always need to be able to mount the root file system. */ mp->mnt_flag |= MNT_FORCE; if ((error = ffs_mountfs(rootvp, mp, l)) != 0) { vfs_unbusy(mp); vfs_rele(mp); return (error); } mp->mnt_flag &= ~MNT_FORCE; mountlist_append(mp); ump = VFSTOUFS(mp); fs = ump->um_fs; memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt)); (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0); (void)ffs_statvfs(mp, &mp->mnt_stat); vfs_unbusy(mp); setrootfstime((time_t)fs->fs_time); return (0); } static int ffs_acls(struct mount *mp, int fs_flags) { struct ufsmount *ump; ump = VFSTOUFS(mp); if (ump->um_fstype == UFS2 && (ump->um_flags & UFS_EA) == 0 && ((mp->mnt_flag & (MNT_POSIX1EACLS | MNT_NFS4ACLS)) != 0 || (fs_flags & (FS_POSIX1EACLS | FS_NFS4ACLS)) != 0)) { printf("%s: ACLs requested but not supported by this fs\n", mp->mnt_stat.f_mntonname); return EINVAL; } if ((fs_flags & FS_POSIX1EACLS) != 0) { #ifdef UFS_ACL if (mp->mnt_flag & MNT_NFS4ACLS) printf("WARNING: %s: POSIX.1e ACLs flag on fs conflicts " "with \"nfsv4acls\" mount option; option ignored\n", mp->mnt_stat.f_mntonname); mp->mnt_flag &= ~MNT_NFS4ACLS; mp->mnt_flag |= MNT_POSIX1EACLS; #else printf("WARNING: %s: POSIX.1e ACLs flag on fs but no " "ACLs support\n", mp->mnt_stat.f_mntonname); #endif } if ((fs_flags & FS_NFS4ACLS) != 0) { #ifdef UFS_ACL if (mp->mnt_flag & MNT_POSIX1EACLS) printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " "with \"posix1eacls\" mount option; option ignored\n", mp->mnt_stat.f_mntonname); mp->mnt_flag &= ~MNT_POSIX1EACLS; mp->mnt_flag |= MNT_NFS4ACLS; #else printf("WARNING: %s: NFSv4 ACLs flag on fs but no " "ACLs support\n", mp->mnt_stat.f_mntonname); #endif } if ((mp->mnt_flag & (MNT_NFS4ACLS | MNT_POSIX1EACLS)) == (MNT_NFS4ACLS | MNT_POSIX1EACLS)) { printf("%s: \"posix1eacls\" and \"nfsv4acls\" options " "are mutually exclusive\n", mp->mnt_stat.f_mntonname); return EINVAL; } if (mp->mnt_flag & (MNT_NFS4ACLS | MNT_POSIX1EACLS)) mp->mnt_iflag &= ~(IMNT_SHRLOOKUP|IMNT_NCLOOKUP); else mp->mnt_iflag |= IMNT_SHRLOOKUP|IMNT_NCLOOKUP; return 0; } /* * VFS Operations. * * mount system call */ int ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len) { struct lwp *l = curlwp; struct vnode *devvp = NULL; struct ufs_args *args = data; struct ufsmount *ump = NULL; struct fs *fs; int error = 0, flags, update; mode_t accessmode; if (args == NULL) { DPRINTF("NULL args"); return EINVAL; } if (*data_len < sizeof(*args)) { DPRINTF("bad size args %zu != %zu", *data_len, sizeof(*args)); return EINVAL; } ump = VFSTOUFS(mp); if ((mp->mnt_flag & (MNT_GETARGS|MNT_UPDATE)) && ump == NULL) { DPRINTF("no ump"); return EIO; } if (mp->mnt_flag & MNT_GETARGS) { args->fspec = NULL; *data_len = sizeof *args; return 0; } update = mp->mnt_flag & MNT_UPDATE; /* Check arguments */ if (args->fspec == NULL) { if (!update) { /* New mounts must have a filename for the device */ DPRINTF("no filename for mount"); return EINVAL; } } else { /* * Look up the name and verify that it's sane. */ error = namei_simple_user(args->fspec, NSM_FOLLOW_NOEMULROOT, &devvp); if (error != 0) { DPRINTF("namei_simple_user returned %d", error); return error; } /* * Be sure this is a valid block device */ if (devvp->v_type != VBLK) { DPRINTF("non block device %d", devvp->v_type); error = ENOTBLK; goto fail; } if (bdevsw_lookup(devvp->v_rdev) == NULL) { DPRINTF("can't find block device 0x%jx", devvp->v_rdev); error = ENXIO; goto fail; } if (update) { /* * Be sure we're still naming the same device * used for our initial mount */ if (devvp != ump->um_devvp && devvp->v_rdev != ump->um_devvp->v_rdev) { DPRINTF("wrong device 0x%jx != 0x%jx", (uintmax_t)devvp->v_rdev, (uintmax_t)ump->um_devvp->v_rdev); error = EINVAL; goto fail; } vrele(devvp); devvp = NULL; } } if (devvp == NULL) { devvp = ump->um_devvp; vref(devvp); } /* * If mount by non-root, then verify that user has necessary * permissions on the device. * * Permission to update a mount is checked higher, so here we presume * updating the mount is okay (for example, as far as securelevel goes) * which leaves us with the normal check. */ accessmode = VREAD; if (update ? (mp->mnt_iflag & IMNT_WANTRDWR) != 0 : (mp->mnt_flag & MNT_RDONLY) == 0) accessmode |= VWRITE; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT, KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp, KAUTH_ARG(accessmode)); VOP_UNLOCK(devvp); if (error) { DPRINTF("kauth returned %d", error); goto fail; } #ifdef WAPBL /* WAPBL can only be enabled on a r/w mount. */ if (((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) || (mp->mnt_iflag & IMNT_WANTRDONLY)) { mp->mnt_flag &= ~MNT_LOG; } #else /* !WAPBL */ mp->mnt_flag &= ~MNT_LOG; #endif /* !WAPBL */ error = set_statvfs_info(path, UIO_USERSPACE, args->fspec, UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l); if (error) goto fail; if (!update) { int xflags; if (mp->mnt_flag & MNT_RDONLY) xflags = FREAD; else xflags = FREAD | FWRITE; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_OPEN(devvp, xflags, FSCRED); VOP_UNLOCK(devvp); if (error) { DPRINTF("VOP_OPEN returned %d", error); goto fail; } /* Need fstrans_start() for assertion in ufs_strategy(). */ if ((mp->mnt_flag & MNT_RDONLY) == 0) fstrans_start(mp); error = ffs_mountfs(devvp, mp, l); if ((mp->mnt_flag & MNT_RDONLY) == 0) fstrans_done(mp); if (error) { DPRINTF("ffs_mountfs returned %d", error); vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); (void)VOP_CLOSE(devvp, xflags, NOCRED); VOP_UNLOCK(devvp); goto fail; } ump = VFSTOUFS(mp); fs = ump->um_fs; } else { /* * Update the mount. The file system is suspended. */ KASSERT(fstrans_is_owner(mp)); /* * The initial mount got a reference on this * device, so drop the one obtained via * namei(), above. */ vrele(devvp); ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) { /* * Changing from r/w to r/o */ flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; error = ffs_flushfiles(mp, flags, l); if (error) return error; error = UFS_WAPBL_BEGIN(mp); if (error) { DPRINTF("wapbl %d", error); return error; } if (ffs_cgupdate(ump, MNT_WAIT) == 0 && fs->fs_clean & FS_WASCLEAN) { if (mp->mnt_flag & MNT_SOFTDEP) fs->fs_flags &= ~FS_DOSOFTDEP; fs->fs_clean = FS_ISCLEAN; (void) ffs_sbupdate(ump, MNT_WAIT); } UFS_WAPBL_END(mp); } #ifdef WAPBL if ((mp->mnt_flag & MNT_LOG) == 0) { error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE); if (error) { DPRINTF("ffs_wapbl_stop returned %d", error); return error; } } #endif /* WAPBL */ if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) { /* * Finish change from r/w to r/o */ fs->fs_ronly = 1; fs->fs_fmod = 0; } error = ffs_acls(mp, fs->fs_flags); if (error) return error; if (mp->mnt_flag & MNT_RELOAD) { error = ffs_reload(mp, l->l_cred, l); if (error) { DPRINTF("ffs_reload returned %d", error); return error; } } if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) { /* * Changing from read-only to read/write */ #ifndef QUOTA2 if (fs->fs_flags & FS_DOQUOTA2) { ump->um_flags |= UFS_QUOTA2; uprintf("%s: options QUOTA2 not enabled%s\n", mp->mnt_stat.f_mntonname, (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting"); DPRINTF("ffs_quota2 %d", EINVAL); return EINVAL; } #endif fs->fs_ronly = 0; fs->fs_clean = fs->fs_clean == FS_ISCLEAN ? FS_WASCLEAN : 0; fs->fs_fmod = 1; #ifdef WAPBL if (fs->fs_flags & FS_DOWAPBL) { const char *nm = mp->mnt_stat.f_mntonname; if (!mp->mnt_wapbl_replay) { printf("%s: log corrupted;" " replay cancelled\n", nm); return EFTYPE; } printf("%s: replaying log to disk\n", nm); error = wapbl_replay_write(mp->mnt_wapbl_replay, devvp); if (error) { DPRINTF("%s: wapbl_replay_write %d", nm, error); return error; } wapbl_replay_stop(mp->mnt_wapbl_replay); fs->fs_clean = FS_WASCLEAN; } #endif /* WAPBL */ if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); } #ifdef WAPBL error = ffs_wapbl_start(mp); if (error) { DPRINTF("ffs_wapbl_start returned %d", error); return error; } #endif /* WAPBL */ #ifdef QUOTA2 if (!fs->fs_ronly) { error = ffs_quota2_mount(mp); if (error) { DPRINTF("ffs_quota2_mount returned %d", error); return error; } } #endif if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata)) ump->um_discarddata = ffs_discard_init(devvp, fs); if (args->fspec == NULL) return 0; } (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, sizeof(fs->fs_fsmnt)); fs->fs_flags &= ~FS_DOSOFTDEP; if ((fs->fs_ronly && (fs->fs_clean & FS_ISCLEAN) == 0) || (!fs->fs_ronly && (fs->fs_clean & FS_WASCLEAN) == 0)) { printf("%s: file system not clean (fs_clean=%#x); " "please fsck(8)\n", mp->mnt_stat.f_mntfromname, fs->fs_clean); } if (UFS_WAPBL_BEGIN(mp) == 0) { mutex_enter(&ump->um_lock); if (fs->fs_fmod != 0) { KASSERT(!fs->fs_ronly); if (fs->fs_clean & FS_WASCLEAN) fs->fs_time = time_second; fs->fs_fmod = 0; mutex_exit(&ump->um_lock); (void) ffs_cgupdate(ump, MNT_WAIT); } else { mutex_exit(&ump->um_lock); } UFS_WAPBL_END(mp); } if ((mp->mnt_flag & MNT_SOFTDEP) != 0) { printf("%s: `-o softdep' is no longer supported, " "consider `-o log'\n", mp->mnt_stat.f_mntfromname); mp->mnt_flag &= ~MNT_SOFTDEP; } return (error); fail: vrele(devvp); return (error); } /* * Reload all incore data for a filesystem (used after running fsck on * the root filesystem and finding things to fix). The filesystem must * be mounted read-only. * * Things to do to update the mount: * 1) invalidate all cached meta-data. * 2) re-read superblock from disk. * 3) re-read summary information from disk. * 4) invalidate all inactive vnodes. * 5) invalidate all cached file data. * 6) re-read inode data for all active vnodes. */ int ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l) { struct vnode *vp, *devvp; struct inode *ip; void *space; struct buf *bp; struct fs *fs, *newfs; int i, bsize, blks, error; int32_t *lp, fs_sbsize; struct ufsmount *ump; daddr_t sblockloc; struct vnode_iterator *marker; if ((mp->mnt_flag & MNT_RDONLY) == 0) return (EINVAL); ump = VFSTOUFS(mp); /* * Step 1: invalidate all cached meta-data. */ devvp = ump->um_devvp; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = vinvalbuf(devvp, 0, cred, l, 0, 0); VOP_UNLOCK(devvp); if (error) panic("%s: dirty1", __func__); /* * Step 2: re-read superblock from disk. XXX: We don't handle * possibility that superblock moved. Which implies that we don't * want its size to change either. */ fs = ump->um_fs; fs_sbsize = fs->fs_sbsize; error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize, 0, &bp); if (error) return (error); newfs = kmem_alloc(fs_sbsize, KM_SLEEP); memcpy(newfs, bp->b_data, fs_sbsize); #ifdef FFS_EI if (ump->um_flags & UFS_NEEDSWAP) { ffs_sb_swap((struct fs *)bp->b_data, newfs); newfs->fs_flags |= FS_SWAPPED; } else #endif newfs->fs_flags &= ~FS_SWAPPED; brelse(bp, 0); /* Allow converting from UFS2 to UFS2EA but not vice versa. */ if (newfs->fs_magic == FS_UFS2EA_MAGIC) { ump->um_flags |= UFS_EA; newfs->fs_magic = FS_UFS2_MAGIC; } else { if ((ump->um_flags & UFS_EA) != 0) return EINVAL; } if ((newfs->fs_magic != FS_UFS1_MAGIC) && (newfs->fs_magic != FS_UFS2_MAGIC)) { kmem_free(newfs, fs_sbsize); return (EIO); /* XXX needs translation */ } if (!ffs_superblock_validate(newfs)) { kmem_free(newfs, fs_sbsize); return (EINVAL); } /* * The current implementation doesn't handle the possibility that * these values may have changed. */ if ((newfs->fs_sbsize != fs_sbsize) || (newfs->fs_cssize != fs->fs_cssize) || (newfs->fs_contigsumsize != fs->fs_contigsumsize) || (newfs->fs_ncg != fs->fs_ncg)) { kmem_free(newfs, fs_sbsize); return (EINVAL); } /* Store off old fs_sblockloc for fs_oldfscompat_read. */ sblockloc = fs->fs_sblockloc; /* * Copy pointer fields back into superblock before copying in XXX * new superblock. These should really be in the ufsmount. XXX * Note that important parameters (eg fs_ncg) are unchanged. */ newfs->fs_csp = fs->fs_csp; newfs->fs_maxcluster = fs->fs_maxcluster; newfs->fs_contigdirs = fs->fs_contigdirs; newfs->fs_ronly = fs->fs_ronly; newfs->fs_active = fs->fs_active; memcpy(fs, newfs, (u_int)fs_sbsize); kmem_free(newfs, fs_sbsize); /* * Recheck for Apple UFS filesystem. */ ump->um_flags &= ~UFS_ISAPPLEUFS; if (ffs_is_appleufs(devvp, fs)) { #ifdef APPLE_UFS ump->um_flags |= UFS_ISAPPLEUFS; #else DPRINTF("AppleUFS not supported"); return (EIO); /* XXX: really? */ #endif } if (UFS_MPISAPPLEUFS(ump)) { /* see comment about NeXT below */ ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN; ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ; mp->mnt_iflag |= IMNT_DTYPE; } else { ump->um_maxsymlinklen = fs->fs_maxsymlinklen; ump->um_dirblksiz = UFS_DIRBLKSIZ; if (ump->um_maxsymlinklen > 0) mp->mnt_iflag |= IMNT_DTYPE; else mp->mnt_iflag &= ~IMNT_DTYPE; } ffs_oldfscompat_read(fs, ump, sblockloc); mutex_enter(&ump->um_lock); ump->um_maxfilesize = fs->fs_maxfilesize; if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) { uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n", mp->mnt_stat.f_mntonname, fs->fs_flags, (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting"); if ((mp->mnt_flag & MNT_FORCE) == 0) { mutex_exit(&ump->um_lock); return (EINVAL); } } if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } mutex_exit(&ump->um_lock); ffs_statvfs(mp, &mp->mnt_stat); /* * Step 3: re-read summary information from disk. */ blks = howmany(fs->fs_cssize, fs->fs_fsize); space = fs->fs_csp; for (i = 0; i < blks; i += fs->fs_frag) { bsize = fs->fs_bsize; if (i + fs->fs_frag > blks) bsize = (blks - i) * fs->fs_fsize; error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize, 0, &bp); if (error) { return (error); } #ifdef FFS_EI if (UFS_FSNEEDSWAP(fs)) ffs_csum_swap((struct csum *)bp->b_data, (struct csum *)space, bsize); else #endif memcpy(space, bp->b_data, (size_t)bsize); space = (char *)space + bsize; brelse(bp, 0); } /* * We no longer know anything about clusters per cylinder group. */ if (fs->fs_contigsumsize > 0) { lp = fs->fs_maxcluster; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; } vfs_vnode_iterator_init(mp, &marker); while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) { /* * Step 4: invalidate all inactive vnodes. */ if (vrecycle(vp)) continue; /* * Step 5: invalidate all cached file data. */ if (vn_lock(vp, LK_EXCLUSIVE)) { vrele(vp); continue; } if (vinvalbuf(vp, 0, cred, l, 0, 0)) panic("%s: dirty2", __func__); /* * Step 6: re-read inode data for all active vnodes. */ ip = VTOI(vp); error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, 0, &bp); if (error) { vput(vp); break; } ffs_load_inode(bp, ip, fs, ip->i_number); brelse(bp, 0); vput(vp); } vfs_vnode_iterator_destroy(marker); return (error); } /* * Possible superblock locations ordered from most to least likely. */ static const int sblock_try[] = SBLOCKSEARCH; static int ffs_superblock_validate(struct fs *fs) { int32_t i, fs_bshift = 0, fs_fshift = 0, fs_fragshift = 0, fs_frag; int32_t fs_inopb; /* Check the superblock size */ if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs)) return 0; /* Check the file system blocksize */ if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE) return 0; if (!powerof2(fs->fs_bsize)) return 0; /* Check the size of frag blocks */ if (!powerof2(fs->fs_fsize)) return 0; if (fs->fs_fsize == 0) return 0; /* * XXX: these values are just zero-checked to prevent obvious * bugs. We need more strict checks. */ if (fs->fs_size == 0 && fs->fs_old_size == 0) return 0; if (fs->fs_cssize == 0) return 0; if (fs->fs_ipg == 0) return 0; if (fs->fs_fpg == 0) return 0; if (fs->fs_ncg == 0) return 0; if (fs->fs_maxbpg == 0) return 0; /* Check the number of inodes per block */ if (fs->fs_magic == FS_UFS1_MAGIC) fs_inopb = fs->fs_bsize / sizeof(struct ufs1_dinode); else /* fs->fs_magic == FS_UFS2_MAGIC */ fs_inopb = fs->fs_bsize / sizeof(struct ufs2_dinode); if (fs->fs_inopb != fs_inopb) return 0; /* Block size cannot be smaller than fragment size */ if (fs->fs_bsize < fs->fs_fsize) return 0; /* Compute fs_bshift and ensure it is consistent */ for (i = fs->fs_bsize; i > 1; i >>= 1) fs_bshift++; if (fs->fs_bshift != fs_bshift) return 0; /* Compute fs_fshift and ensure it is consistent */ for (i = fs->fs_fsize; i > 1; i >>= 1) fs_fshift++; if (fs->fs_fshift != fs_fshift) return 0; /* Compute fs_fragshift and ensure it is consistent */ for (i = fs->fs_frag; i > 1; i >>= 1) fs_fragshift++; if (fs->fs_fragshift != fs_fragshift) return 0; /* Check the masks */ if (fs->fs_bmask != ~(fs->fs_bsize - 1)) return 0; if (fs->fs_fmask != ~(fs->fs_fsize - 1)) return 0; /* * Now that the shifts and masks are sanitized, we can use the ffs_ API. */ /* Check the number of frag blocks */ if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG) return 0; if (fs->fs_frag != fs_frag) return 0; /* Check the size of cylinder groups */ if ((fs->fs_cgsize < sizeof(struct cg)) || (fs->fs_cgsize > fs->fs_bsize)) return 0; return 1; } static int ffs_is_appleufs(struct vnode *devvp, struct fs *fs) { struct dkwedge_info dkw; int ret = 0; /* * First check to see if this is tagged as an Apple UFS filesystem * in the disklabel. */ if (getdiskinfo(devvp, &dkw) == 0 && strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0) ret = 1; #ifdef APPLE_UFS else { struct appleufslabel *applefs; struct buf *bp; daddr_t blkno = APPLEUFS_LABEL_OFFSET / DEV_BSIZE; int error; /* * Manually look for an Apple UFS label, and if a valid one * is found, then treat it like an Apple UFS filesystem anyway. */ error = bread(devvp, blkno, APPLEUFS_LABEL_SIZE, 0, &bp); if (error) { DPRINTF("bread@0x%jx returned %d", (intmax_t)blkno, error); return 0; } applefs = (struct appleufslabel *)bp->b_data; error = ffs_appleufs_validate(fs->fs_fsmnt, applefs, NULL); if (error == 0) ret = 1; brelse(bp, 0); } #endif return ret; } /* * Common code for mount and mountroot */ int ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l) { struct ufsmount *ump = NULL; struct buf *bp = NULL; struct fs *fs = NULL; dev_t dev; void *space; daddr_t sblockloc = 0; int blks, fstype = 0; int error, i, bsize, ronly, bset = 0; #ifdef FFS_EI int needswap = 0; /* keep gcc happy */ #endif int32_t *lp; kauth_cred_t cred; u_int32_t allocsbsize, fs_sbsize = 0; dev = devvp->v_rdev; cred = l ? l->l_cred : NOCRED; /* Flush out any old buffers remaining from a previous use. */ vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0); VOP_UNLOCK(devvp); if (error) { DPRINTF("vinvalbuf returned %d", error); return error; } ronly = (mp->mnt_flag & MNT_RDONLY) != 0; ump = kmem_zalloc(sizeof(*ump), KM_SLEEP); mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE); error = ffs_snapshot_init(ump); if (error) { DPRINTF("ffs_snapshot_init returned %d", error); goto out; } ump->um_ops = &ffs_ufsops; #ifdef WAPBL sbagain: #endif /* * Try reading the superblock in each of its possible locations. */ for (i = 0; ; i++) { daddr_t fs_sblockloc; if (bp != NULL) { brelse(bp, BC_NOCACHE); bp = NULL; } if (sblock_try[i] == -1) { DPRINTF("no superblock found"); error = EINVAL; fs = NULL; goto out; } error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, 0, &bp); if (error) { DPRINTF("bread@0x%x returned %d", sblock_try[i] / DEV_BSIZE, error); fs = NULL; goto out; } fs = (struct fs *)bp->b_data; sblockloc = sblock_try[i]; DPRINTF("fs_magic 0x%x", fs->fs_magic); /* * Swap: here, we swap fs->fs_sbsize in order to get the correct * size to read the superblock. Once read, we swap the whole * superblock structure. */ if (fs->fs_magic == FS_UFS2EA_MAGIC) { ump->um_flags |= UFS_EA; fs->fs_magic = FS_UFS2_MAGIC; } else if (fs->fs_magic == FS_UFS2EA_MAGIC_SWAPPED) { ump->um_flags |= UFS_EA; fs->fs_magic = FS_UFS2_MAGIC_SWAPPED; } if (fs->fs_magic == FS_UFS1_MAGIC) { fs_sbsize = fs->fs_sbsize; fstype = UFS1; #ifdef FFS_EI needswap = 0; } else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) { fs_sbsize = bswap32(fs->fs_sbsize); fstype = UFS1; needswap = 1; #endif } else if (fs->fs_magic == FS_UFS2_MAGIC) { fs_sbsize = fs->fs_sbsize; fstype = UFS2; #ifdef FFS_EI needswap = 0; } else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) { fs_sbsize = bswap32(fs->fs_sbsize); fstype = UFS2; needswap = 1; #endif } else continue; /* fs->fs_sblockloc isn't defined for old filesystems */ if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) { if (sblockloc == SBLOCK_UFS2) /* * This is likely to be the first alternate * in a filesystem with 64k blocks. * Don't use it. */ continue; fs_sblockloc = sblockloc; } else { fs_sblockloc = fs->fs_sblockloc; #ifdef FFS_EI if (needswap) fs_sblockloc = bswap64(fs_sblockloc); #endif } /* Check we haven't found an alternate superblock */ if (fs_sblockloc != sblockloc) continue; /* Check the superblock size */ if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs)) continue; fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP); memcpy(fs, bp->b_data, fs_sbsize); /* Swap the whole superblock structure, if necessary. */ #ifdef FFS_EI if (needswap) { ffs_sb_swap((struct fs*)bp->b_data, fs); fs->fs_flags |= FS_SWAPPED; } else #endif fs->fs_flags &= ~FS_SWAPPED; /* * Now that everything is swapped, the superblock is ready to * be sanitized. */ if (!ffs_superblock_validate(fs)) { kmem_free(fs, fs_sbsize); continue; } /* Ok seems to be a good superblock */ break; } ump->um_fs = fs; #ifdef WAPBL if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) { error = ffs_wapbl_replay_start(mp, fs, devvp); if (error && (mp->mnt_flag & MNT_FORCE) == 0) { DPRINTF("ffs_wapbl_replay_start returned %d", error); goto out; } if (!error) { if (!ronly) { /* XXX fsmnt may be stale. */ printf("%s: replaying log to disk\n", fs->fs_fsmnt); error = wapbl_replay_write(mp->mnt_wapbl_replay, devvp); if (error) { DPRINTF("wapbl_replay_write returned %d", error); goto out; } wapbl_replay_stop(mp->mnt_wapbl_replay); fs->fs_clean = FS_WASCLEAN; } else { /* XXX fsmnt may be stale */ printf("%s: replaying log to memory\n", fs->fs_fsmnt); } /* Force a re-read of the superblock */ brelse(bp, BC_INVAL); bp = NULL; kmem_free(fs, fs_sbsize); fs = NULL; goto sbagain; } } #else /* !WAPBL */ if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) { error = EPERM; DPRINTF("no force %d", error); goto out; } #endif /* !WAPBL */ ffs_oldfscompat_read(fs, ump, sblockloc); ump->um_maxfilesize = fs->fs_maxfilesize; if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) { uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n", mp->mnt_stat.f_mntonname, fs->fs_flags, (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting"); if ((mp->mnt_flag & MNT_FORCE) == 0) { error = EINVAL; DPRINTF("no force %d", error); goto out; } } fs->fs_fmod = 0; if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } ump->um_fstype = fstype; if (fs->fs_sbsize < SBLOCKSIZE) brelse(bp, BC_INVAL); else brelse(bp, 0); bp = NULL; if (ffs_is_appleufs(devvp, fs)) { #ifdef APPLE_UFS ump->um_flags |= UFS_ISAPPLEUFS; #else DPRINTF("AppleUFS not supported"); error = EINVAL; goto out; #endif } #if 0 /* * XXX This code changes the behaviour of mounting dirty filesystems, to * XXX require "mount -f ..." to mount them. This doesn't match what * XXX mount(8) describes and is disabled for now. */ /* * If the file system is not clean, don't allow it to be mounted * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set * for the root file system.) */ if (fs->fs_flags & FS_DOWAPBL) { /* * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL * bit is set, although there's a window in unmount where it * could be FS_ISCLEAN */ if ((mp->mnt_flag & MNT_FORCE) == 0 && (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) { error = EPERM; goto out; } } else if ((fs->fs_clean & FS_ISCLEAN) == 0 && (mp->mnt_flag & MNT_FORCE) == 0) { error = EPERM; goto out; } #endif /* * Verify that we can access the last block in the fs * if we're mounting read/write. */ if (!ronly) { error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1), fs->fs_fsize, 0, &bp); if (error) { DPRINTF("bread@0x%jx returned %d", (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1), error); bset = BC_INVAL; goto out; } if (bp->b_bcount != fs->fs_fsize) { DPRINTF("bcount %x != fsize %x", bp->b_bcount, fs->fs_fsize); error = EINVAL; bset = BC_INVAL; goto out; } brelse(bp, BC_INVAL); bp = NULL; } fs->fs_ronly = ronly; /* Don't bump fs_clean if we're replaying journal */ if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) { if (ronly == 0) { fs->fs_clean = fs->fs_clean == FS_ISCLEAN ? FS_WASCLEAN : 0; fs->fs_fmod = 1; } } bsize = fs->fs_cssize; blks = howmany(bsize, fs->fs_fsize); if (fs->fs_contigsumsize > 0) bsize += fs->fs_ncg * sizeof(int32_t); bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs); allocsbsize = bsize; space = kmem_alloc((u_long)allocsbsize, KM_SLEEP); fs->fs_csp = space; for (i = 0; i < blks; i += fs->fs_frag) { bsize = fs->fs_bsize; if (i + fs->fs_frag > blks) bsize = (blks - i) * fs->fs_fsize; error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize, 0, &bp); if (error) { DPRINTF("bread@0x%jx %d", (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i), error); goto out1; } #ifdef FFS_EI if (needswap) ffs_csum_swap((struct csum *)bp->b_data, (struct csum *)space, bsize); else #endif memcpy(space, bp->b_data, (u_int)bsize); space = (char *)space + bsize; brelse(bp, 0); bp = NULL; } if (fs->fs_contigsumsize > 0) { fs->fs_maxcluster = lp = space; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; space = lp; } bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs); fs->fs_contigdirs = space; space = (char *)space + bsize; memset(fs->fs_contigdirs, 0, bsize); /* Compatibility for old filesystems - XXX */ if (fs->fs_avgfilesize <= 0) fs->fs_avgfilesize = AVFILESIZ; if (fs->fs_avgfpdir <= 0) fs->fs_avgfpdir = AFPDIR; fs->fs_active = NULL; mp->mnt_data = ump; mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev; mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS); mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; mp->mnt_stat.f_namemax = FFS_MAXNAMLEN; if (UFS_MPISAPPLEUFS(ump)) { /* NeXT used to keep short symlinks in the inode even * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen * is probably -1, but we still need to be able to identify * short symlinks. */ ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN; ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ; mp->mnt_iflag |= IMNT_DTYPE; } else { ump->um_maxsymlinklen = fs->fs_maxsymlinklen; ump->um_dirblksiz = UFS_DIRBLKSIZ; if (ump->um_maxsymlinklen > 0) mp->mnt_iflag |= IMNT_DTYPE; else mp->mnt_iflag &= ~IMNT_DTYPE; } mp->mnt_fs_bshift = fs->fs_bshift; mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */ mp->mnt_flag |= MNT_LOCAL; mp->mnt_iflag |= IMNT_MPSAFE | IMNT_CAN_RWTORO | IMNT_SHRLOOKUP | IMNT_NCLOOKUP; #ifdef FFS_EI if (needswap) ump->um_flags |= UFS_NEEDSWAP; #endif error = ffs_acls(mp, fs->fs_flags); if (error) goto out1; ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_nindir = fs->fs_nindir; ump->um_lognindir = ffs(fs->fs_nindir) - 1; ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT; ump->um_seqinc = fs->fs_frag; for (i = 0; i < MAXQUOTAS; i++) ump->um_quotas[i] = NULLVP; spec_node_setmountedfs(devvp, mp); if (ronly == 0 && fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); #ifdef WAPBL if (!ronly) { KDASSERT(fs->fs_ronly == 0); /* * ffs_wapbl_start() needs mp->mnt_stat initialised if it * needs to create a new log file in-filesystem. */ error = ffs_statvfs(mp, &mp->mnt_stat); if (error) { DPRINTF("ffs_statvfs returned %d", error); goto out1; } error = ffs_wapbl_start(mp); if (error) { DPRINTF("ffs_wapbl_start returned %d", error); goto out1; } } #endif /* WAPBL */ if (ronly == 0) { #ifdef QUOTA2 error = ffs_quota2_mount(mp); if (error) { DPRINTF("ffs_quota2_mount returned %d", error); goto out1; } #else if (fs->fs_flags & FS_DOQUOTA2) { ump->um_flags |= UFS_QUOTA2; uprintf("%s: options QUOTA2 not enabled%s\n", mp->mnt_stat.f_mntonname, (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting"); if ((mp->mnt_flag & MNT_FORCE) == 0) { error = EINVAL; DPRINTF("quota disabled %d", error); goto out1; } } #endif } if (mp->mnt_flag & MNT_DISCARD) ump->um_discarddata = ffs_discard_init(devvp, fs); return (0); out1: kmem_free(fs->fs_csp, allocsbsize); out: #ifdef WAPBL if (mp->mnt_wapbl_replay) { wapbl_replay_stop(mp->mnt_wapbl_replay); wapbl_replay_free(mp->mnt_wapbl_replay); mp->mnt_wapbl_replay = 0; } #endif if (fs) kmem_free(fs, fs->fs_sbsize); spec_node_setmountedfs(devvp, NULL); if (bp) brelse(bp, bset); if (ump) { if (ump->um_oldfscompat) kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t)); mutex_destroy(&ump->um_lock); kmem_free(ump, sizeof(*ump)); mp->mnt_data = NULL; } return (error); } /* * Sanity checks for loading old filesystem superblocks. * See ffs_oldfscompat_write below for unwound actions. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ static void ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc) { off_t maxfilesize; int32_t *extrasave; if ((fs->fs_magic != FS_UFS1_MAGIC) || (fs->fs_old_flags & FS_FLAGS_UPDATED)) return; if (!ump->um_oldfscompat) ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t), KM_SLEEP); memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512); extrasave = ump->um_oldfscompat; extrasave += 512/sizeof(int32_t); extrasave[0] = fs->fs_old_npsect; extrasave[1] = fs->fs_old_interleave; extrasave[2] = fs->fs_old_trackskew; /* These fields will be overwritten by their * original values in fs_oldfscompat_write, so it is harmless * to modify them here. */ fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; fs->fs_maxbsize = fs->fs_bsize; fs->fs_time = fs->fs_old_time; fs->fs_size = fs->fs_old_size; fs->fs_dsize = fs->fs_old_dsize; fs->fs_csaddr = fs->fs_old_csaddr; fs->fs_sblockloc = sblockloc; fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL); if (fs->fs_old_postblformat == FS_42POSTBLFMT) { fs->fs_old_nrpos = 8; fs->fs_old_npsect = fs->fs_old_nsect; fs->fs_old_interleave = 1; fs->fs_old_trackskew = 0; } if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_old_inodefmt < FS_44INODEFMT) { fs->fs_maxfilesize = (u_quad_t) 1LL << 39; fs->fs_qbmask = ~fs->fs_bmask; fs->fs_qfmask = ~fs->fs_fmask; } maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1; if (fs->fs_maxfilesize > maxfilesize) fs->fs_maxfilesize = maxfilesize; /* Compatibility for old filesystems */ if (fs->fs_avgfilesize <= 0) fs->fs_avgfilesize = AVFILESIZ; if (fs->fs_avgfpdir <= 0) fs->fs_avgfpdir = AFPDIR; #if 0 if (bigcgs) { fs->fs_save_cgsize = fs->fs_cgsize; fs->fs_cgsize = fs->fs_bsize; } #endif } /* * Unwinding superblock updates for old filesystems. * See ffs_oldfscompat_read above for details. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ static void ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump) { int32_t *extrasave; if ((fs->fs_magic != FS_UFS1_MAGIC) || (fs->fs_old_flags & FS_FLAGS_UPDATED)) return; fs->fs_old_time = fs->fs_time; fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; fs->fs_old_flags = fs->fs_flags; #if 0 if (bigcgs) { fs->fs_cgsize = fs->fs_save_cgsize; } #endif memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512); extrasave = ump->um_oldfscompat; extrasave += 512/sizeof(int32_t); fs->fs_old_npsect = extrasave[0]; fs->fs_old_interleave = extrasave[1]; fs->fs_old_trackskew = extrasave[2]; } /* * unmount vfs operation */ int ffs_unmount(struct mount *mp, int mntflags) { struct lwp *l = curlwp; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; int error, flags; u_int32_t bsize; #ifdef WAPBL extern int doforce; #endif /* The file system is suspended. */ KASSERT(fstrans_is_owner(mp)); if (ump->um_discarddata) { ffs_discard_finish(ump->um_discarddata, mntflags); ump->um_discarddata = NULL; } flags = 0; if (mntflags & MNT_FORCE) flags |= FORCECLOSE; if ((error = ffs_flushfiles(mp, flags, l)) != 0) return (error); if (fs->fs_ronly == 0 && UFS_WAPBL_BEGIN(mp) == 0) { if (ffs_cgupdate(ump, MNT_WAIT) == 0 && fs->fs_clean & FS_WASCLEAN) { mutex_enter(&ump->um_lock); fs->fs_clean = FS_ISCLEAN; fs->fs_fmod = 0; mutex_exit(&ump->um_lock); (void) ffs_sbupdate(ump, MNT_WAIT); } UFS_WAPBL_END(mp); } #ifdef WAPBL KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl)); if (mp->mnt_wapbl_replay) { KDASSERT(fs->fs_ronly); wapbl_replay_stop(mp->mnt_wapbl_replay); wapbl_replay_free(mp->mnt_wapbl_replay); mp->mnt_wapbl_replay = 0; } error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE)); if (error) { return error; } #endif /* WAPBL */ if (ump->um_devvp->v_type != VBAD) spec_node_setmountedfs(ump->um_devvp, NULL); vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE, NOCRED); vput(ump->um_devvp); bsize = fs->fs_cssize; if (fs->fs_contigsumsize > 0) bsize += fs->fs_ncg * sizeof(int32_t); bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs); kmem_free(fs->fs_csp, bsize); kmem_free(fs, fs->fs_sbsize); if (ump->um_oldfscompat != NULL) kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t)); mutex_destroy(&ump->um_lock); ffs_snapshot_fini(ump); kmem_free(ump, sizeof(*ump)); mp->mnt_data = NULL; mp->mnt_flag &= ~MNT_LOCAL; return (0); } /* * Flush out all the files in a filesystem. */ int ffs_flushfiles(struct mount *mp, int flags, struct lwp *l) { extern int doforce; struct ufsmount *ump; int error; if (!doforce) flags &= ~FORCECLOSE; ump = VFSTOUFS(mp); #ifdef QUOTA if ((error = quota1_umount(mp, flags)) != 0) return (error); #endif #ifdef QUOTA2 if ((error = quota2_umount(mp, flags)) != 0) return (error); #endif #ifdef UFS_EXTATTR if (ump->um_fstype == UFS1) { if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED) ufs_extattr_stop(mp, l); if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED) ufs_extattr_uepm_destroy(&ump->um_extattr); mp->mnt_flag &= ~MNT_EXTATTR; } #endif if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0) return (error); ffs_snapshot_unmount(mp); /* * Flush all the files. */ error = vflush(mp, NULLVP, flags); if (error) return (error); /* * Flush filesystem metadata. */ vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0); VOP_UNLOCK(ump->um_devvp); if (flags & FORCECLOSE) /* XXXDBJ */ error = 0; #ifdef WAPBL if (error) return error; if (mp->mnt_wapbl) { error = wapbl_flush(mp->mnt_wapbl, 1); if (flags & FORCECLOSE) error = 0; } #endif return (error); } /* * Get file system statistics. */ int ffs_statvfs(struct mount *mp, struct statvfs *sbp) { struct ufsmount *ump; struct fs *fs; ump = VFSTOUFS(mp); fs = ump->um_fs; mutex_enter(&ump->um_lock); sbp->f_bsize = fs->fs_bsize; sbp->f_frsize = fs->fs_fsize; sbp->f_iosize = fs->fs_bsize; sbp->f_blocks = fs->fs_dsize; sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) + fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks); sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t) fs->fs_minfree) / (u_int64_t) 100; if (sbp->f_bfree > sbp->f_bresvd) sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd; else sbp->f_bavail = 0; sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO; sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; sbp->f_favail = sbp->f_ffree; sbp->f_fresvd = 0; mutex_exit(&ump->um_lock); copy_statvfs_info(sbp, mp); return (0); } struct ffs_sync_ctx { int waitfor; }; static bool ffs_sync_selector(void *cl, struct vnode *vp) { struct ffs_sync_ctx *c = cl; struct inode *ip; KASSERT(mutex_owned(vp->v_interlock)); ip = VTOI(vp); /* * Skip the vnode/inode if inaccessible. */ if (ip == NULL || vp->v_type == VNON) return false; /* * We deliberately update inode times here. This will * prevent a massive queue of updates accumulating, only * to be handled by a call to unmount. * * XXX It would be better to have the syncer trickle these * out. Adjustment needed to allow registering vnodes for * sync when the vnode is clean, but the inode dirty. Or * have ufs itself trickle out inode updates. * * If doing a lazy sync, we don't care about metadata or * data updates, because they are handled by each vnode's * synclist entry. In this case we are only interested in * writing back modified inodes. */ if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 && (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) && (vp->v_iflag & VI_ONWORKLST) == 0))) return false; return true; } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. */ int ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred) { struct vnode *vp; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs; struct vnode_iterator *marker; int error, allerror = 0; struct ffs_sync_ctx ctx; fs = ump->um_fs; if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */ panic("%s: rofs mod, fs=%s", __func__, fs->fs_fsmnt); } /* * Write back each (modified) inode. */ vfs_vnode_iterator_init(mp, &marker); ctx.waitfor = waitfor; while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx))) { error = vn_lock(vp, LK_EXCLUSIVE | (waitfor == MNT_LAZY ? LK_NOWAIT : 0)); if (error) { vrele(vp); continue; } if (waitfor == MNT_LAZY) { error = UFS_WAPBL_BEGIN(vp->v_mount); if (!error) { error = ffs_update(vp, NULL, NULL, UPDATE_CLOSE); UFS_WAPBL_END(vp->v_mount); } } else { error = VOP_FSYNC(vp, cred, FSYNC_NOLOG | (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0); } if (error) allerror = error; vput(vp); } vfs_vnode_iterator_destroy(marker); /* * Force stale file system control information to be flushed. */ if (waitfor != MNT_LAZY) { bool need_devvp_fsync; mutex_enter(ump->um_devvp->v_interlock); need_devvp_fsync = (ump->um_devvp->v_numoutput > 0 || !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd)); mutex_exit(ump->um_devvp->v_interlock); if (need_devvp_fsync) { int flags = FSYNC_NOLOG; if (waitfor == MNT_WAIT) flags |= FSYNC_WAIT; vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); if ((error = VOP_FSYNC(ump->um_devvp, cred, flags, 0, 0)) != 0) allerror = error; VOP_UNLOCK(ump->um_devvp); } } #if defined(QUOTA) || defined(QUOTA2) qsync(mp); #endif /* * Write back modified superblock. */ error = UFS_WAPBL_BEGIN(mp); if (error) { allerror = error; } else { mutex_enter(&ump->um_lock); if (fs->fs_fmod != 0) { fs->fs_fmod = 0; fs->fs_time = time_second; mutex_exit(&ump->um_lock); if ((error = ffs_cgupdate(ump, waitfor))) allerror = error; } else { mutex_exit(&ump->um_lock); } UFS_WAPBL_END(mp); } #ifdef WAPBL if (mp->mnt_wapbl) { error = wapbl_flush(mp->mnt_wapbl, (waitfor == MNT_WAIT)); if (error) allerror = error; } #endif return (allerror); } /* * Load inode from disk and initialize vnode. */ static int ffs_init_vnode(struct ufsmount *ump, struct vnode *vp, ino_t ino) { struct fs *fs; struct inode *ip; struct buf *bp; int error; fs = ump->um_fs; /* Read in the disk contents for the inode. */ error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)), (int)fs->fs_bsize, 0, &bp); if (error) return error; /* Allocate and initialize inode. */ ip = pool_cache_get(ffs_inode_cache, PR_WAITOK); memset(ip, 0, sizeof(struct inode)); ip->i_ump = ump; ip->i_fs = fs; ip->i_dev = ump->um_dev; ip->i_number = ino; if (ump->um_fstype == UFS1) ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache, PR_WAITOK); else ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache, PR_WAITOK); ffs_load_inode(bp, ip, fs, ino); brelse(bp, 0); ip->i_vnode = vp; #if defined(QUOTA) || defined(QUOTA2) ufsquota_init(ip); #endif /* Initialise vnode with this inode. */ vp->v_tag = VT_UFS; vp->v_op = ffs_vnodeop_p; vp->v_data = ip; /* Initialize genfs node. */ genfs_node_init(vp, &ffs_genfsops); return 0; } /* * Undo ffs_init_vnode(). */ static void ffs_deinit_vnode(struct ufsmount *ump, struct vnode *vp) { struct inode *ip = VTOI(vp); genfs_node_destroy(vp); vp->v_data = NULL; if (ump->um_fstype == UFS1) pool_cache_put(ffs_dinode1_cache, ip->i_din.ffs1_din); else pool_cache_put(ffs_dinode2_cache, ip->i_din.ffs2_din); pool_cache_put(ffs_inode_cache, ip); } /* * Read an inode from disk and initialize this vnode / inode pair. * Caller assures no other thread will try to load this inode. */ int ffs_loadvnode(struct mount *mp, struct vnode *vp, const void *key, size_t key_len, const void **new_key) { ino_t ino; struct fs *fs; struct inode *ip; struct ufsmount *ump; int error; KASSERT(key_len == sizeof(ino)); memcpy(&ino, key, key_len); ump = VFSTOUFS(mp); fs = ump->um_fs; error = ffs_init_vnode(ump, vp, ino); if (error) return error; ip = VTOI(vp); if (ip->i_mode == 0) { ffs_deinit_vnode(ump, vp); return ENOENT; } /* Initialize the vnode from the inode. */ ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp); /* Finish inode initialization. */ ip->i_devvp = ump->um_devvp; vref(ip->i_devvp); /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_magic == FS_UFS1_MAGIC && /* XXX */ fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_uid = ip->i_ffs1_ouid; /* XXX */ ip->i_gid = ip->i_ffs1_ogid; /* XXX */ } /* XXX */ uvm_vnp_setsize(vp, ip->i_size); cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip)); *new_key = &ip->i_number; return 0; } /* * Create a new inode on disk and initialize this vnode / inode pair. */ int ffs_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp, struct vattr *vap, kauth_cred_t cred, void *extra, size_t *key_len, const void **new_key) { ino_t ino; struct fs *fs; struct inode *ip; struct timespec ts; struct ufsmount *ump; int error, mode; KASSERT(dvp->v_mount == mp); KASSERT(vap->va_type != VNON); *key_len = sizeof(ino); ump = VFSTOUFS(mp); fs = ump->um_fs; mode = MAKEIMODE(vap->va_type, vap->va_mode); /* Allocate fresh inode. */ error = ffs_valloc(dvp, mode, cred, &ino); if (error) return error; /* Attach inode to vnode. */ error = ffs_init_vnode(ump, vp, ino); if (error) { if (UFS_WAPBL_BEGIN(mp) == 0) { ffs_vfree(dvp, ino, mode); UFS_WAPBL_END(mp); } return error; } ip = VTOI(vp); if (ip->i_mode) { panic("%s: dup alloc ino=%" PRId64 " on %s: mode %o/%o " "gen %x/%x size %" PRIx64 " blocks %" PRIx64, __func__, ino, fs->fs_fsmnt, DIP(ip, mode), ip->i_mode, DIP(ip, gen), ip->i_gen, DIP(ip, size), DIP(ip, blocks)); } if (DIP(ip, size) || DIP(ip, blocks)) { printf("%s: ino=%" PRId64 " on %s: " "gen %x/%x has non zero blocks %" PRIx64 " or size %" PRIx64 "\n", __func__, ino, fs->fs_fsmnt, DIP(ip, gen), ip->i_gen, DIP(ip, blocks), DIP(ip, size)); if ((ip)->i_ump->um_fstype == UFS1) panic("%s: dirty filesystem?", __func__); DIP_ASSIGN(ip, blocks, 0); DIP_ASSIGN(ip, size, 0); } /* Set uid / gid. */ if (cred == NOCRED || cred == FSCRED) { ip->i_gid = 0; ip->i_uid = 0; } else { ip->i_gid = VTOI(dvp)->i_gid; ip->i_uid = kauth_cred_geteuid(cred); } DIP_ASSIGN(ip, gid, ip->i_gid); DIP_ASSIGN(ip, uid, ip->i_uid); #if defined(QUOTA) || defined(QUOTA2) error = UFS_WAPBL_BEGIN(mp); if (error) { ffs_deinit_vnode(ump, vp); return error; } error = chkiq(ip, 1, cred, 0); if (error) { ffs_vfree(dvp, ino, mode); UFS_WAPBL_END(mp); ffs_deinit_vnode(ump, vp); return error; } UFS_WAPBL_END(mp); #endif /* Set type and finalize. */ ip->i_flags = 0; DIP_ASSIGN(ip, flags, 0); ip->i_mode = mode; DIP_ASSIGN(ip, mode, mode); if (vap->va_rdev != VNOVAL) { /* * Want to be able to use this to make badblock * inodes, so don't truncate the dev number. */ if (ump->um_fstype == UFS1) ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev, UFS_MPNEEDSWAP(ump)); else ip->i_ffs2_rdev = ufs_rw64(vap->va_rdev, UFS_MPNEEDSWAP(ump)); } ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp); ip->i_devvp = ump->um_devvp; vref(ip->i_devvp); /* Set up a new generation number for this inode. */ ip->i_gen++; DIP_ASSIGN(ip, gen, ip->i_gen); if (fs->fs_magic == FS_UFS2_MAGIC) { vfs_timestamp(&ts); ip->i_ffs2_birthtime = ts.tv_sec; ip->i_ffs2_birthnsec = ts.tv_nsec; } uvm_vnp_setsize(vp, ip->i_size); cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip)); *new_key = &ip->i_number; return 0; } /* * File handle to vnode * * Have to be really careful about stale file handles: * - check that the inode number is valid * - call ffs_vget() to get the locked inode * - check for an unallocated inode (i_mode == 0) * - check that the given client host has export rights and return * those rights via. exflagsp and credanonp */ int ffs_fhtovp(struct mount *mp, struct fid *fhp, int lktype, struct vnode **vpp) { struct ufid ufh; int error; if (fhp->fid_len != sizeof(struct ufid)) return EINVAL; memcpy(&ufh, fhp, sizeof(ufh)); if ((error = ffs_checkrange(mp, ufh.ufid_ino)) != 0) return error; return (ufs_fhtovp(mp, &ufh, lktype, vpp)); } /* * Vnode pointer to File handle */ /* ARGSUSED */ int ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size) { struct inode *ip; struct ufid ufh; if (*fh_size < sizeof(struct ufid)) { *fh_size = sizeof(struct ufid); return E2BIG; } ip = VTOI(vp); *fh_size = sizeof(struct ufid); memset(&ufh, 0, sizeof(ufh)); ufh.ufid_len = sizeof(struct ufid); ufh.ufid_ino = ip->i_number; ufh.ufid_gen = ip->i_gen; memcpy(fhp, &ufh, sizeof(ufh)); return (0); } void ffs_init(void) { if (ffs_initcount++ > 0) return; ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0, "ffsino", NULL, IPL_NONE, NULL, NULL, NULL); ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0, "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL); ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0, "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL); ufs_init(); } void ffs_reinit(void) { ufs_reinit(); } void ffs_done(void) { if (--ffs_initcount > 0) return; ufs_done(); pool_cache_destroy(ffs_dinode2_cache); pool_cache_destroy(ffs_dinode1_cache); pool_cache_destroy(ffs_inode_cache); } /* * Write a superblock and associated information back to disk. */ int ffs_sbupdate(struct ufsmount *mp, int waitfor) { struct fs *fs = mp->um_fs; struct fs *bfs; struct buf *bp; int error; error = ffs_getblk(mp->um_devvp, fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK, fs->fs_sbsize, false, &bp); if (error) return error; mutex_enter(&mp->um_lock); memcpy(bp->b_data, fs, fs->fs_sbsize); mutex_exit(&mp->um_lock); bfs = (struct fs *)bp->b_data; bfs->fs_flags &= ~FS_INTERNAL; ffs_oldfscompat_write((struct fs *)bp->b_data, mp); if (mp->um_flags & UFS_EA) { KASSERT(bfs->fs_magic == FS_UFS2_MAGIC); bfs->fs_magic = FS_UFS2EA_MAGIC; } #ifdef FFS_EI if (mp->um_flags & UFS_NEEDSWAP) ffs_sb_swap(bfs, bfs); #endif if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); return (error); } int ffs_cgupdate(struct ufsmount *mp, int waitfor) { struct fs *fs = mp->um_fs; struct buf *bp; int blks; void *space; int i, size, error = 0, allerror = 0; UFS_WAPBL_JLOCK_ASSERT(mp->um_mountp); allerror = ffs_sbupdate(mp, waitfor); blks = howmany(fs->fs_cssize, fs->fs_fsize); space = fs->fs_csp; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), FFS_NOBLK, size, false, &bp); if (error) break; #ifdef FFS_EI if (mp->um_flags & UFS_NEEDSWAP) ffs_csum_swap((struct csum*)space, (struct csum*)bp->b_data, size); else #endif memcpy(bp->b_data, space, (u_int)size); space = (char *)space + size; if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); } if (!allerror && error) allerror = error; return (allerror); } int ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp, int attrnamespace, const char *attrname) { #ifdef UFS_EXTATTR /* * File-backed extended attributes are only supported on UFS1. * UFS2 has native extended attributes. */ if (VFSTOUFS(mp)->um_fstype == UFS1) return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname)); #endif return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname)); } /* * Synch vnode for a mounted file system. */ static int ffs_vfs_fsync(vnode_t *vp, int flags) { int error, i, pflags; #ifdef WAPBL struct mount *mp; #endif KASSERT(vp->v_type == VBLK); KASSERT(spec_node_getmountedfs(vp) != NULL); /* * Flush all dirty data associated with the vnode. */ pflags = PGO_ALLPAGES | PGO_CLEANIT; if ((flags & FSYNC_WAIT) != 0) pflags |= PGO_SYNCIO; rw_enter(vp->v_uobj.vmobjlock, RW_WRITER); error = VOP_PUTPAGES(vp, 0, 0, pflags); if (error) return error; #ifdef WAPBL mp = spec_node_getmountedfs(vp); if (mp && mp->mnt_wapbl) { /* * Don't bother writing out metadata if the syncer is * making the request. We will let the sync vnode * write it out in a single burst through a call to * VFS_SYNC(). */ if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0) return 0; /* * Don't flush the log if the vnode being flushed * contains no dirty buffers that could be in the log. */ if (!LIST_EMPTY(&vp->v_dirtyblkhd)) { error = wapbl_flush(mp->mnt_wapbl, 0); if (error) return error; } if ((flags & FSYNC_WAIT) != 0) { mutex_enter(vp->v_interlock); while (vp->v_numoutput) cv_wait(&vp->v_cv, vp->v_interlock); mutex_exit(vp->v_interlock); } return 0; } #endif /* WAPBL */ error = vflushbuf(vp, flags); if (error == 0 && (flags & FSYNC_CACHE) != 0) { i = 1; (void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE, kauth_cred_get()); } return error; }